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Contents Ultrafast Optics

1. Gaussian beam focusing

a) A mode-locked Ti:sapphire oscillator emits Gaussian pulses with a pulse length of τ=
50fs at a carrier wavelength of λ0 = 800nm, carrying an energy of E = 50nJ. The beam
diameter is D = 5mm. Calculate the peak intensity and the corresponding electric
field amplitude occurring in the focus of a lens with the focal length f = 10mm. (Hint:
Please assume D and τ to be defined as FWHM of the beam/pulse).

b) Which power must be reached in order to overcome the field strength (≥ 1010 V
cm ) be-

tween the nucleus and electrons of an atom (pulsed Nd:YAG laser, spot diameter 5µm)?
A typical Nd:YAG laser is operating at λ= 1064nm and emits pulses with a pulse dura-
tion of around 10 ns.

a.) Solution: The intensity of the short laser pulse can be written as a function of the
propagation direction z and the transversal coordinate r

I (r, z) = I0

(
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0

W ′(z)

)2

exp

(
−η r 2
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0)2
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)
. (1.1)

For different definition of the pulse with we introduced the parameter η which varies for
different criteria
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4 1
e
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. (1.2)

We can now calculate the power of the beam by integrating the intensity over the whole x-y-
plane which leads to
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2πˆ

0
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This leads to an expression of the Intensity for a given power P

I0 = Pη

π(2w ′
0)2

. (1.4)

We can now calculate the whole pulse energy by integrating over time. We assume a Gaussian
shaped envelope

P (E , t ) = P0(E)exp

(
−η t 2

τ2

)
, (1.5)

which leads to the pulse energy

E =
∞̂

−∞
P (E , t )dt = P0τ

π

η
⇒ P0(E) =

√
η

π

E

τ
. (1.6)
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For a lens of focal length f the diameter of the Gaussian beam at the focal point of the lens
is

w ′
0 =

f ·λ
πwL

, 2w = D. (1.7)

We can now use (1.4) to compute the intensity

I0 = P0η

π(2w ′
0)2

= η

4π

√
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π

E
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π2w 2
L

f 2λ2
= 1
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πη3

(
w 2

L

f λ
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E

τ
= 2 ·1017 W

m2
. (1.8)

We can now deduce the electric field strength by using

I0 = cε0E 2

2
⇒ E =

√
2I0

cε0
= 1,23

V

m
. (1.9)

b.) Solution: We use the former relation between the intensity and the electric field to
find a formula for the puls peak power

E =
√

2I0

cε0
=

√
2ηP

π(2w0)2cε0
≥ 1012 V

m
= Ẽ . (1.10)

This leads to

P ≥ π(2w0)2cε0Ẽ 2

2η
= 3,76 ·1010 W. (1.11)

The corresponding pulse energy is

E = P0τ

√
π

η
= 400J. (1.12)
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2. Pulse train characteristics

a) Derive and calculate the spectrum of the Ti:Sa laser system from above assuming a
repetition rate of frep = 80MHz.

b) How would the measured spectrum look if the switch was set to transmit only a single
pulse?

Solution In order to derive the spectrum, we assume an infinite pulse train of Gaussian
shaped pulses with a temporal distance of ξ= 1/ frep. We calculate the pulse train as a convo-
lution of the Gaussian pulses with an infinite comb of Dirac-Deltas with a sampling distance
ξ. We can therefore write

f (t ) = exp

(
−η t 2

τ2

)
,

∞∑
n=−∞

δ(t −ξn). (2.13)

We can write the convolution as

h(t ) = f (t )∗ g (t ) =
∞̂

−∞
f (t − t ′)g (t ′)dt ′ =
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)
. (2.14)

However, it is much more convenient to use the property of the Fourier transfrom

F T [h(t )] = F T [ f (t )∗ g (t )] = F T [ f (t )] ·F T [g (t )] (2.15)

and compute both Fourier transforms separately

F T [ f (t )] = 1p
2π
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dt . (2.16)

We can use the Gaussian integral
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)
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The comb of Delta Functions can be Fourier transformed as follows

F T [g (t )] = 1p
2π
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−∞
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2π
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We can now put (2.17) and (2.18) together

F T [h(t )] = τ√
2η

exp

(
−τ

2

4η
ω2

)p
2π

ξ

∞∑
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δ

(
ω− 2πm

ξ

)
∝ exp

(
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ξ

)
. (2.19)

The spectrum therefore also consists of delta functions, which are modulated by a Gaus-
sian envelope, which FWHM is proportional to 1/τ2. This shows, that shorter pulses have
a broader spectrum. For a single pulse F T [ f (t )] the spectrum is also a Gaussian function,
whereas for a pulse train the spectrum is not continuous but consists of delta functions,
which are spaced by 2π/ξ.

Generally we can identify the parameter ξ as the round trip time T in the resonator

T = ξ= 2l

c
= 1

frep
. (2.20)

For a repition rate frep = 80MHz the frequency spacing can be calculated as

∆ω= 2π

ξ
= 2π

T
⇒∆ν= 1

T
= frep = 80MHz. (2.21)

ξ

t

I

∝ 1

τ2

2π

ξ

ω

I

Fig. 1: Left: temporal intensity of the pulse train consisting of thin Gaussian beams.
Right: Calculated spectrum, which is made of delta functions, which are modulated by a Gaus-
sian envelope.
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3 Spectrometer and Resonator characteristics

a) Sketch and compare a prism spectrometer and a grating spectrometer. Which param-
eters influence their respective resolutions λ/dλ?

b) A prism with a = 3cm (base length) composed of flint glass (n(480nm) = 1.8297 and
n(546,6nm)) is used. Calculate the resolution.

c) Is it possible to use a grating spectrometer in order to resolve the longitudinal modes
of the laser described in the previous task? Substantiate your answer mathematically.
Do you know other techniques to resolve longitudinal modes?

d) What is the maximum length of a He-Ne laser (spectral line width ∆ fl = 1,5GHz and
CO2 laser (∆ fl = 60MHz) to oscillate only with 1 longitudinal mode?)

e) Estimate the minimal achievable pulse duration of a Ti:Sa laser with the given emission
spectra 2 for sech2 pulses.

Fig. 2: Absorption and emission spectra of a Ti:Sa crystal.

a.) Solution: At first we discuss the prism spectrometer:

aperture
a

prism
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The resolution of a prism spectrometer is given as

λ

dλ
= a ·

∣∣∣∣dn

dλ

∣∣∣∣, (3.1)

where a is the prism base length. The refractive index n of the material is a function of the
wavelength and causes a dispersion dn

dλ .

We can now discuss the grating spectrometer: The resolution of the spectrometer is deter-

aperture

grating

mined by the number of illuminated grating lines N which leads to

λ

dλ
= m ·N , (3.2)

where m is the order of diffraction.
Now we want to compare the advantages and disadvantages of both spectrometer types:

Table 1: Comparison of the grating and prism spectrometer

Grating spectrometer Prism spectrometer

+ in most cases higher resolution – not as high resolution
– limited free spectral range due to the

overlap of high order diffraction. How-
ever, the spectral range can be in-
creased by adding color filters

+ free spectral range not limited

– polarization dependent – prism material limits wavelength
range

– wavelength dependent diffraction effi-
ciency

+ higher output intensity as there is only
one order

+ polarization independent
– lower damage threshhold (issue for

pulsed lasers)

b.) Solution: We can calculate the resolution of the prism spectrometer by using equa-
tion (3.1)

λ

dλ
= a ·

∣∣∣∣dn

dλ

∣∣∣∣≈ 0,03m ·
∣∣∣∣ 1.8126−1.8297

(546.6−480) ·10−9 m

∣∣∣∣= 7.7 ·103. (3.3)
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This leads to a resolution at 480 nm of

∆λ= λ

7.7 ·103
≈ 50 ·10−3 nm = 5pm. (3.4)

c.) Solution: A Ti:Sa laser system works in a wavelength regime of λ= 800nm. This leads
to a laser frequency of ν = 3,75 ·1014 Hz. The mode spacing is determined by the repetition
rate ∆ν= frep = 80MHz.

For a typical beam diameter D = 5mm and assuming we use the first order diffraction of
the grating (m = 1) we can calculate the required grating period Λ in order to resolve the
longitudinal modes

λ

∆λ
= m ·N = m

D

Λ
. (3.5)

For ∆λ
λ

≈ ∆ν
ν

we find

Λ= ∆λ
λ

m ·D = ∆ν
ν

m ·D

= 80MHz

3,75 ·1014 Hz
·5mm = 1nm ≪ 800nm. (3.6)

Because the required grating period is much smaller than the wavelength λ of the laser, we
get no refraction. The smallest possible period is determined by the abbe limit Λ= λ

2 which
is much larger than what we need. The solution to the problem to use a Fabry-Perot interfer-
ometer instead.

d.) Solution: In order to achieve single-mode lasing, we need to ensure that only one res-
onator mode lies inside the spectral line width ∆ fl . Therefore the free spectral range (mode
spacing) must be larger or equal to the free spectral range

∆ν= c

2L
!=∆ fl ⇒ L = c

2∆ fl
. (3.7)

For the two lasers we obtain the following lengths:

L = c

2∆ fl
=

{
10cm He-Ne laser

2,5m CO2 laser
(3.8)

e.) Solution: We can calculate the minimal pulse duration by using the bandwidth prod-
uct

δt ·δν= K , K =
{

0.315 sech

0.441 Gaussian
. (3.9)

From figure 2 we can read of the bandwidth δλ= 160nm. We can use the approximation

δν

ν
= δλ

λ
⇒ δν= δλ

λ
ν= c

λ2
δλ. (3.10)
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With a centre wavelength of 750 nm we find for the bandwidth

δν= c

(750nm)2
160nm = 85,27THz. (3.11)

Now we can calculate the minimal pulse duration as

δt = 0.315

85,27THz
= 3,7fs. (3.12)
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4 Generation of ultra-short pulses

a) Explain the principle of Kerr-lens mode locking and sketch a corresponding cavity.
What are the main differences to Q-switching?

b) Estimate the minimal pulse duration of two Q-switched lasers with a corresponding
cavity length of 1 m and 0,3 m, respectively. How can this be achieved? How does the
pulse duration change if it takes 2,3, . . . round trips to dump the total energy stored in
the cavity?

c) What are the main differences of an active Q switched compared to a passive Q switched
laser? Describe solutions to shorten the pulse duration of Q-switched pulses.

d) Calculate the achievable pulse length of a mode-locked Argon laser (resonator length
l = 1m,λ= 488nm, line width ∆ fl = 4GHz).

e) Estimate the amount of modes and pulse duration in a 1 m cavity for a Argon laser
(gain spectra ≈ 7GHz), dye laser (gain spectra ≈ 10THz) and Ti:Sa laser.

a.) Solution: Kerr-lens mode locking is based on the nonlinear Kerr-effect, which de-
scribes the intensity dependent refractive index in a 3rd order nonlinear medium. Since the
pulse has a transverse intensity profile, the refractive index will take a similar shape. This
leads to a gradient of refractive index in transverse direction, which acts as a lens.

There are two different ways to achieve mode locking with the Kerr-effect. The first is hard
aperture mode locking. Here we insert a simple aperture inside the cavity which blocks light
which is not on the optical axis. If the resonator produces laser pulses, the intensity is higher
and the pulse is focused in the Kerr-medium which leads to a smaller beam diameter. There-
fore the laser pulses are preferred to the CW modes. The second way is to use soft aperture
mode locking. Here we design the cavity in such a way that the beam overlaps only with the
active medium when we have a pulse inside the cavity. This can be achieved by using a small
active medium. Here, the CW beam only overlaps partially with the active medium and is
suppressed.

mode locking Q switching

repetition time equal to round trip
time

repetition time larger than round trip time

pulse travels inside the cavity inversion builds up, then the energy is sud-
denly extracted

emitted pulse are copies of original
pulse

no correlation between pulses

no temporal jitter high temporal jitter (passive Q switching)
periodic modulation step like modulation
recovery time faster than RTT recovery time faster than decay time of the up-

per laser level
pulse forms gradually over several
hundred round trips

pulse formation follows modulation
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b.) Solution: The minimal pulse duration can be determined by assuming that the energy
is extracted in one round trip

T = 2L

c
= 2m

3 ·108 m
s

= 6,66ns (1m)

= 0,3m

3 ·108 m
s

= 1ns (0,3m). (4.1)

We can achieve this pulse duration by dumping the energy inside the cavity in a single round
trip. We can use an acousto- or electro-optical modulator, which couples the pulse out of the
resonator. If it takes several round trips to dump the total energy, then the pulse duration will
increase.

c.) Solution

active Q switching passive Q switching

external modulation modulation driven by the pulse itself
higher τ lower τ
fixed pulse frequency pulse frequency can not be controlled, leads

to temporal jitter

We can shorten the pulse duration of a Q-switched laser by reducing the cavity length and
include cavity dumping where we reduce τPh by gating the out-coupling. Another method
is to increase the losses in the low-Q-state which leads to a build-up of higher inversion and
thus reducing the pulse duration according to this formula:

τ= τPh
ni −n f

ni −nth(1+ ln ni
nth

)
. (4.2)

We see that by increasing ni −nth and decreasing τPh, the pulse duration reduces.

d.) Solution: For the mode-locked Argon lase the achievable pulse length is determined
by the bandwidth product

δt ≥ 0.441

4GHz
100ps (4.3)

e.) Solution: We can estimate the amount of modes by calculating

N = ∆ν
δν

, δν= c

2L
= 150MHz. (4.4)

The pulse duration can again be obtained by the time-bandwidth product

δt = 0.441

∆ν
=


63ps Argon

44fs Dye

4,7fs Ti:Sa

, N = ∆ν

150MHz
=


47 Argon

6.7 ·104 Dye

6.2 ·105 Ti:Sa

. (4.5)
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5 Dispersion and Compression

a) Sketch and explain two different ways to compensate the group velocity dispersion
(GVD) introduced by a medium exhibiting normal dispersion. Why is GVD compensa-
tion important for the generation of ultrashort pulses?

b) Derive the GVD for a pair of parallel gratings.

c) For what purpose could it be necessary to induce additional GVD?

d) Explain the advantages of utilizing gratings instead of prisms in a pulse compressor.

a.) Solution: There are many different methods to compensate group velocity disper-
sion. One possibility is to use a setup of parallel gratings. However, two gratings will lead to a
spatial separation of the colours which can be compensated by either a mirror or two more
gratings. We can also compensate second order dispersion by using the angular dispersion
of prisms. We can adjust the GDD by manipulating the distance between both prisms. The
spatial separation can be compensated by two extra prisms or a mirror. A third method is
to use chirped mirrors which consists of different sized layers reflecting the spectral com-
ponents in different depths. GVD compensation is especially important because it causes
pulse broadening.

b.) Solution: The optical path length in a setup of two graings is

Sopt. = L

sinϑ
+L sinγ= L

sinϑ
(1+ sinϑsinγ), (5.1)

when γ and ϑ are the incoming and outgoing angles of the beam with respect to the grating
surface. The accumulated pphase is

φ(ω) = ν

c
Sopt.(ω). (5.2)

Using the grating equation cosϑ−cosγ= λ
d we find that the second derivative is

d2φ

dω2

∣∣∣∣
ω0

=− λ2L

2πc2d 2 cos2ϑ
⇒ GVD = GDD

L
=− λ2

2πc2d 2 cos2ϑ
. (5.3)

c.) Solution: One use of additional GVD is the stretching of pulse e. g. in chirped pulse
amplification (CPA). It is also utilized when the bandwidth of the pulse is increased by self
phase modulation in order to decrease the bandwidth limited pulse duration. In a third order
nonlinear medium additional chirp is imprinted onto the spectrum which can be used to
compress the pulse to smaller pulse durations.

d.) Solution: Generally gratings have no material dispersion and can compress a pulse
more effectively because they inflict more dispersion. They also have a very high damage
threshold which is important in pulse compressors. It is also easier to match the stretching
and compressing in a CPA system by using gratings.
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6 Autocorrelation

a) Sketch the setup of a background-free SHG autocorrelator and explain its principle of
operation. What information can be gained from measurements with that setup and
what are its limitations?

b) Compare the measured signal obtained by a SHG autocorrelator in the interferomet-
ric (with background) and background-free case. How does the autocorrelation trace
looks like from a chirped and unchirped pulse?

c) Figure out the autocorrelations of a single rectangular pulse (temporal width τ), a sin-
gle Gaussian pulse and a pulse comprising three identical equidistant Gaussian peaks
separated by twice the pulse duration τ (FWHM). Specify characteristic dimensions
of the autocorrelation functions and their relation to the parameters of the respective
pulses.

a.) Solution: The autocorrelator is sketched in figure 3. The basic idea is to split the orig-
inal pulse into two replicas with a time delay and focus them into a nonlinear crystal which
generates the Second harmonic. Now we can measure the spectrum as a function of the de-
lay τ and find the autocorrelation function. With the measurements we can gain information

Fig. 3: Setup for background free intensity autocorrelation.

about the pulse duration and approximate shape. However, the signal is symmetric in time,
therefore we cannot retrieve the actual pulse shape. Furthermore it requires a stable pulse
shape and we gain no phase information from the signal.

b.) Solution: In the background-free case the background term (optical rectification) of
the SH is suppressed. This is achieved by overlapping both replicas under an angle in the
nonlinear crystal. However, by doing this we lose possible information about second order
dispersion which depend on the spectral phase.

Comparing the autocorrelation traces of a chirped and unchirped pulse, one finds that the
chirped signal is a little bit broader than the unchirped signal, but still has the same shape.
Higher order dispersion mostly manifest themselves in the wings of the autocorrelation func-
tion.
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Fig. 4: Middle: Background free autocorrelation function of a bandwidth limited pulse (top) and
chirped pulse (bottom).
Right: Interferometric autocorrelation function.

c.) Solution: The autocorrelation signal of a rectangular shaped pulse with temporal
width τ is a triangular shaped signal with a baseline 2τ. The autocorrelation signal of a single
Gaussian pulse is also Gaussian shaped with a new width of

p
2τ.

Fig. 5: Examples of autocorrelation functions.
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