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Electron trajectories Strong Field Laser Physics

1 Electron trajectories

1.1 Motion of an electron in an oscillating electric field

In the lecture, we discussed Newtons equations of motion for an electron in an oscillating
electric field, E(t ) = E0 cos(ωt ), (E0 = const.,ω= const.), in atomic units

∂p

∂t
=−E0 cos(ωt ). (1.1)

Verify the analytical results for x(t ) and v(t ) derived in the lecture by numerically integrating
Newton’s equation of motion for two different values for ωt0, assuming that x(t0) = 0, v(t0) =
0. In your simulation, propagate the electron for a few cycles.

Plot the numerical and analytical results in the same diagram. Find the oscillation ampli-
tude, oscillation velocity and ponderomotive energy. Compare the numerical results to the
formulas derived in the lecture.

Plot a few example trajectories, starting at different phasesωt0 of the laser field and describe
your observations.

Solution: We can start this problem by creating a simple integrator which uses a Euler
forward technique to integrate the equation of motion and calculate the electron trajectory.
For that we initialize a time, position and velocity array, define a time step dt and specify the
electric field.

def integrate(tstart , E, dt, x, v):
for i in range(round(tstart), len(x)-1):

v[i+1] = v[i]-E[i]*dt
x[i+1] = x[i]+v[i]*dt

The electric field amplitude and the time were chosen accordingly to the figure in the script
as E0 = 0,01a.u. and t ∈ [0,400]a.u..

First the electron motion was calculated for the rest position (x0 = 0, v0 = 0) at the phase
ωt0 = 0. The results are displayed in figure 1. The integrated function was also compared to
the analytical result of the electron motion which was

x(t ) = E0

ω2
cos(ωt )− E0

ω2
, v(t ) =−E0

ω
sin(ωt ). (1.2)

The corresponding curve is also displayed in figure 1. We observe that both lines look very
similar. This is due to the choice of a reasonably small time step dt = 0.01 where the Euler
forward is sufficiently accurate.

The red curve of figure 1 shows the electron trajectory for a rest postion at a phase position
ωt0 = 2.97. The physical interpretation of this is, that the electron was placed in the field
which can be achieved by tunneling.
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1.1 Motion of an electron in an oscillating electric field Strong Field Laser Physics
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Fig. 1: Oscillating electric field with angular frequency 2π·3.5
400 a.u. and electron trajectories for different

initial phase positions.

Now we want to find the oscillation amplitude, -velocity and ponderomotive energy. The
oscillation amplitude can be estimated by finding the maximum and minimum x-position
of our electron and recognizing the amplitude as the half of the peak-peak value amplitude
=(max(x)-min(x))/2). The analytical amplitude can be calculated easily as

analytical
E0

ω2
= 0.01

(
2π ·3.5

400

)−2

= 3.318 (1.3)

numerical
E0

ω2
= 3.308. (1.4)

The osscillation velocity can be estimaed in the same way using the v-values of the electron.
Here we obtain

analytical
E0

ω
= 0.01

(
2π ·3.5

400

)−1

= 0.181891364 (1.5)

numerical
E0

ω
= 0.181891365. (1.6)

Both values are very similar. Finally we calculate the ponderomotive energy as the time av-
eraged kinetic energy of the electron. For that we have to integrate the velocity over one
oscillation cycle and divide by the oscillation period

UP =
〈

1

2
ẋ2

〉
= 1

T

T̂

0

1

2
ẋ2 dt = 1

4

E 2
0

ω2
. (1.7)

We can calculate this numerically using the trapezian integration technique in the following
way:

period = int(2*np.pi/(w*dt)) # calculates array position of period end
kinetic_energy = 0.5*v[0:period]*v[0:period]
integral=np.trapz(kinetic_energy , x=None , dx=dt)/(2*np.pi/w).
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1.2 Electron motion in a pulsed field: Strong Field Laser Physics

The results are the following

analytical
E 2

0

4ω2
= 0.008271118 (1.8)

numerical
E 2

0

4ω2
= 0.008271117. (1.9)

In the last part we plot some mor example trajectories starting at different phases. The results
are shown in figure 2.
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Fig. 2: Oscillating electric field with angular frequency 2π·3.5
400 a.u. and electron trajectories for three

different initial phase positions.

We observe that only small changes in the initial phase position of the oscillation cycle lead
to vastly different electron trajectories.

1.2 Electron motion in a pulsed field:

Experiments in strong-field laser physics are carried out using pulsed lasers. Define the
elctric field of a femtosecond laser pulse, using the function

E(t ) = E0(t )cos(ωt ) (1.10)

where the envelope function E0(t ) has a femtosecond duration, e. g. a Gaussian with a full
width at half maximum (FWHM) of 10 optical cycles, or a similar sin2 envelope.

Now explore the behaviour of the electron velocity for trajecties starting at different times
in the laser pulse. Describe what happens to a free electron, i.e., one that is created before
the laser pulse? Make a plot of final energy vs. initial time. Under what conditions is the
maximum energy obtained?
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1.2 Electron motion in a pulsed field: Strong Field Laser Physics

Solution: First we translate the provided Matlab-script into Python code and run the
program. The result is a laser pulse with a cos2-shaped envelope function. Figure 3 displays
the electric field (red) and the corresponding envelope (black).
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Fig. 3: Electric field of the femtosecond laser pulse and its envelope function cos2.

Now we want to look at the behaviour of the electron velocity and trajectory for different
times in the laser pulse. We achieve that by using the Euler forward integration from Task 1
and start at different positions in time. The result is shown in figure 4.
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Fig. 4: Electron trajectory (blue) and velocity (orange) for two different starting times.

First the electron was inserted at the beginning of the laser pulse. We can see that the elec-
tron follows the electric field directly by comparing its trajectory to the field in figure ??.
After the laser pulse has passed, the velocity goes back to zero and the electron is at rest
again in the origin. Therefore we can conclude that for an electron that was created before
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1.2 Electron motion in a pulsed field: Strong Field Laser Physics

the laser pulse, we cannot transfer energy to the electron. This is also known as the LAWSON-
WOODWARD theorem and applies to plane waves.

However, if we insert the electron after some part of the laser pulse has already passed, the
electron trajectory can be vastly different. We observe, that the electron drifts away from
the origin and has a net velocity after the laser pulse is completely gone. We can further
investigate this effect by calculating the final energy vs. initial time. For that we took the
velocity of the electron at the end of the laser pulse and calculated its kinetic energy. This is
plotted in figure 5.
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Fig. 5: Final energy of the electron for different initial times in the laser pulse.

The determination of the final energy was implemented rather simply in the following way:

points=500
start_time = np.linspace(0,Nt ,points)
energy = np.zeros_like(start_time)
n=0

for i in start_time:
x3 = np.zeros(len(t))
v3 = np.zeros(len(t))
integrate(i, E, dt, x3 , v3)
energy[n]=0.5*v3[-1]**2
n += 1

We can see that the final energy peaks when the electron is inserted in the peak of the pulse.
However, we also observe that the final energy does not rise continuously but rather oscil-
lates quickly. It is presumed that the electron does not gain net energy when it is inserted at
times where the field amplitude is zero.
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2 Tunnel rate and simple man’s model

2.1 Tunneling rate, single and multiple ionization

The instantaneous tunneling rate, calculated in three dimensions is given by

w =
(

3E n∗3

πZ 3

)1/2
Z 2

4πn∗3

(
2e

n∗

)2n∗
(2l +1)(l +|m|)!

2|m|(|m|)!(l−|m|)!

(
2Z 3

E n∗3

)2n∗−|m|−1

exp

(
− 2Z 3

3n∗3E

)
. (2.1)

These rates can be used to calculate the ionization yield in a time window [t0, t0 +dt ], for
which one has to solve a set of rate equations

dN0

dt
=−N0T0,

dN1

dt
= N0T0 −N1T1,

dN2

dt
= N1T1 −N2T2. (2.2)

Solve the set of rate equations numerically for Xe (up to charge state Xe6
+). The relevant

atomic parameters are contained in the function set_atomic_parameters. Use, for example,
the following laser parameters to define a field:

τ= 10fs, λ= 800nm, I = 8 ·1014 W

cm2
. (2.3)

Begin with a completely neutral target, N0(t = 0) = 1, Ni (t = 0) = 0∀i > 0.

a) Plot the population of each charge state as a function of time.

b) Calculate the yield of each charge state at the end of the pulse, Y j = N j (∞) for various
intensities I ranging from 4 ·1012 to 8 ·1014 W

cm2 . Plot the resulting intensity dependent-
yield curves, i. e. Y j (I ) for all calculated charge states.

c) Perform the focal volume averaging in two dimensions by weighing the intensity-dependent
results

Y (In) = In

n∑
i=1

Y (Ii )

Ii
. (2.4)

Plot the intensity dependent yield curves after focal volume averaging on a log-log
scale. How do they compare to the results without focal volume averaging?

d) How do the curves (with focal volume averaging) change if you allow for an additional
term leading to the production of charge states n > 2 that depends on the tunneling
rate for n −2, i. e.

dN0

dt
=−(1−α)N0T0 −αN0T0

dN1

dt
= (1−α)N0T0 − (1−α)N1T1 (2.5)

dN2

dt
= (1−α)N1T1 − (1−α)N2T2 +αN0T0

with, e. g. α= 0.01? What characteristic effect is mimicked by this modification?
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2.1 Tunneling rate, single and multiple ionization Strong Field Laser Physics

a.) Solution: In order to retrieve the population of each charge state we need to solve
equation (2.2) for all six charge states. For that we define a new function integrate_Rate_equation
which already includes the α from the last task.

def integrate_Rate_equation(a,T,t): # a = alpha , T = tunnel rate
dt = t[1]-t[0]
N = np.zeros ((max_charge ,len(t)))
N[0,0] = 1 # initial condition
for i in range(len(t)-1): # iterate over time

for j in range(max_charge): # iterate over ionization states
if(j==0):
N[j,i+1] = N[j,i]-N[j,i]*T[j,i]*dt
if(j==1):
N[j,i+1] = N[j,i]+((1-a)*N[j-1,i]*T[j-1,i]-(1-a)*N[j,i]*T[j,i])*dt
if(j==len(Z)): # the last state is not further ionized
N[j,i+1] = N[j,i]+(a*N[j-2,i]*T[j-2,i]+(1-a)*N[j-1,i]*T[j-1,i])*dt
else:
N[j,i+1] = N[j,i]+(a*N[j-2,i]*T[j-2,i]+(1-a)*N[j-1,i]*T[j-1,i]-(1-

a)*N[j,i]*T[j,i])*dt
return N

This function requires the transition trate for each ionization process. This can be obtained
by calculating the instantaneous tunneling rate given in (2.1). However, we have different
tunneling rates for the various l and m. This is shown in figure 6.
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Fig. 6: Tunneling rates for the ground state of Xenon into the first ionized state for different m. We
observe that the tunnel rate drops to zero when the E-field vanishes.

Since for Xenon l = 1 we have m = −1,0,1, therefore we must average over three tunneling
rates. The averaged tunneling rates for all ionization states are depicted in figure 7.

Now we perform the integration visualize the population for every ionization state in a single
plot. We can also compare the differences for different α values in figure 8.

By looking again at figure 7 we can explain the sudden jumps of population in figure 8. When
the tunneling rate is high we observe a fast rise in the population state, where as for low
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Fig. 7: Electric field and averaged tunneling rates for different ionization states. We can see that the
tunneling rate drops significantly for higher ionization states.
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Fig. 8: Numerical integration of the rate equations for α= 0 and α= 0.01. We can see that for double
ionization (α= 0.01) the higher ionization states or more populated by several orders of mag-
nitude, whereas the qualitative course of the charge states remains the same.
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2.1 Tunneling rate, single and multiple ionization Strong Field Laser Physics

tunneling rates the population remains constant. After t = 0 there is no population left in the
ground state and first excited state and the other population levels will go into equilibrium,
since their tunneling rate is too low for further population changes.

b.) Solution: Now we want to calculate the yield of each charge state at the end of the
pulse. Here we simply repeat the integration from a.) for various intensities and write the
last value for every ionization state into a new array. Now we can plot the final population
(yield) as a function of intensity. The results are displayed in figure 9.
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Fig. 9: Yield of each ionization state as a function of intensity forα= 0 (no double ionization). We can
see that an increase of intensity leads to stepwise ionization of the Xenon atoms.

c.) Solution: We can try to implement the focal volume averaging via a simple algo-
rithm:

for n in range(len(I)):
for i in range(n+1):

Y_dash[:,n] += Y[:,i]/I[i]
Y_dash[:,n] *= I[n]

We plot the new yield in a double logarithmic scale and compare this to the original yield
(c. f. figure 9). We can see, that the yield for higher intensities stays high instead of dropping
back down. This can be explained by considering the whole intensity profile of the tightly
focused laser beam. There will be always a suitable frequency to generate more population
in e. g. the first excited state. The graph is displayed in figure 10
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Fig. 10: Yield of each ionization state as a function of intensity with (solid line) and without (dashed
line) focal volume averaging for α= 0 (no double ionization). We can see that an increase of
intensity leads to stepwise ionization of the Xenon atoms.

d.) Solution: Now we also change the strength of double ionization by adjusting the
parameter α. The results are displayed in figure 11. We can see that for α > 0 when non-
sequential ionization takes place the yield of the e. g. second ionization state is magnitudes
larger for lower intensities and already starts before the yield of the single ionized population
is saturated.
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Fig. 11: Yield of each ionization state as a function of intensity for various α values. The dashed lines
are the plots for α= 0.01, whereas the dotted lines α= 0.000001.

Reducing the alpha to significantly lower values still shows the same behaviour although it
is relatively weakend. We observe that for higher intensities the curves merge with the case
without non-sequential ionization.
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2.2 Simple man’s model: Direct electrons Strong Field Laser Physics

2.2 Simple man’s model: Direct electrons

The simple man’s model describes a “cooking recipe” for calculating photoelectron spectra
from strongfield inoization.

Implement the SMM and calculate spectra of photoelectrons for a reasonable combination
of laser parameters and atom of your choice with and without focal volume averaging. Plot
the kinetic energy distributions of the photoelectrons and compeare the results with and
without focal colume averaging.

Solution: We use the same laser parameters as before (λ= 800nm,τ= 10fs, I = 8·1014 W
cm2 )

for this calculation and try to calculate the electron spectrum of Xenon. For that we again
calculate the Transition rate and integrate the rate equations numerically. We now follow the
simple mans model. In order to get the ionization yield per time step we subtract the take
the difference of populations for every time step and ionization state.

Now we calculate the drift energy. We can use the result from the lecture

vdrift(t ) =−A(t ) with A(t ) =−∂E

∂t
(2.6)

that the drift velocity can be expressed by the vector potential. In order to avoid integrating
the electric field numerically for many time steps we calculate the vector potential analyti-
cally using Mathematica. The electric field used for the simulation is given as

E(t ) = E0 cos(ωt )cos2
(

t

τ

)
. (2.7)
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Fig. 12: Spectrum of emitted electrons for no non-sequential ionization. The calculation was per-
formed for different integration step sizes ∆t in the integration process.
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The integration yields

A(t ) =−
ˆ

E(t )dt =−1

4
E0

2sin(ωt )

ω
+
τsin

(
t (ωτ−2)

t

)
ωτ−2

+
τsin

(
t (ωτ+2)

t

)
ωτ+2

+C . (2.8)

We can use this function to calculate the drift velocity and thus drift energy for every time
step. Now we discretise the drift energy into 100 intervals and count the number of electrons
in each energy interval. The resulting graph is shown in figure 12.

We observe that for the standard time step∆t = 1 there are energy intervals with no electrons
corresponding to that energy. Therefore we further reduce the stepsize to obtain a smooth
curve of data points. The course of this spectrum fits really well with the energy spectrum
shown in the lecture.

Now we also try to implement the focal volume averaging. Here we calculate the electron
spectrum for different intensities ranging from 4 · 1012 to 8 · 1014 W

cm2 . Then we weigh each
spectrum with the corresponding intensity and add them up for the averaged value. Then
we can compare the result to the spectrum without focal volume averaging. We normalize
both spectra and set their maximum to one for a better comparison. The graph is displayed
in figure 13.
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Fig. 13: Spectrum of emitted electrons for no non-sequential ionization with focal volume averaging
(green) and without c. f. figure 12 (blue).
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3 Tunnel rate and simple man’s model

3.1 CEP effects in direct electrons 1

Consider a few cycle pulse

E = E0(t )cos
(
ωt +φ)

(3.1)

where the FWHM duration of E0(t ) is comparable to a laser cycle, e. e. 5 fs in case of a
λ = 800nm field (T = 2,6fs). Now, the carrier envelope phase φ becomes an important pa-
rameter. Using the code developed in Task 4.2, calculate the directional photoelectron spec-
tra, i. e. those of electrons emitted to the left and right, as a function of CEP. Perfomr the
calculations for an atom and laser parameters of your choice.

Plot the CEP-dependent asymmetry A(φ) = R−L
R+L , where R and L are the number of electrons

emitted to the right or left, respectively, as a function of CEP and drift momentum compo-
nent along the laser polarization. At what pulse shapes (CEP values) are the maximum (min-
imum) symmetries obtained? How does the asymmetry depend on the drift momentum?
What happens to the symmetry if you double (halve) the pulse duration?

Solution:

We start with our laser pulse which has a cos2 shaped envelope with a 5 fs FWHM duration, a

wavelength of 800 nm (e. g. Ti:Sa), an intensity of 8 · 1014 W
cm2 . We want to investigate Xenon

atoms. First we plot the electric field for different CEP values as shown in figure 14.

−8 −6 −4 −2 0 2 4 6 8

time (fs)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

E
(t

)

phi=0

phi=π

Fig. 14: Electric field for CEP = 0 (blue) and CEP =π (orange) for a 5 fs laser pulse.

We now modify our code differ between electrons with a positive drift velocity and negative
drift velocity. We both count the electron yield for right emission (positive velocity) and left
emission (negative velocity) and create a spectrum as in task 4.2. We calculated the spectra
for seven different values of the CEP (figure 15).
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Fig. 15: Spectra of the emitted electrons for left and right emission and different values of the CEP
ranging from 0 to π. We note that for CEP =π the number of electrons emitted to the left and
right is reversed to the case of CEP = 0.
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3.1 CEP effects in direct electrons 1 Strong Field Laser Physics

Now we continuously vary the carrier-envelope-phase and just calculate the total number of
electrons emitted to the left and right by just summing up Spectra. We choose 100 values for
the CEP ranging from 0 to 2π. For the 5 fs pulse we obtain a graph displayed in figure 17.
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Fig. 16: Total number of electrons emitted to the left and right as a function of the carrier-envelope-
phase.

Now we can also calculate the asymmetry A(φ) = R−L
R+L . The respective graph is shown in

figure 18.
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Fig. 17: Asymmetry as a function of the carrier-envelope-phase for a 5 fs pulse. We find the maximum
value for the asymmetry at CEP = 1.66π and the minimum value at CEP = 0.63π.

Now we can also investigate what happens if we double or halve the pulse duration. Fig-
ure 18 shows the respective curves. One observes, that the asymmetry gets larger for smaller
pulse durations. This may be explained by the vastly unsymmetric shape of the pulse in the
few cycle case where the pulse is only two optical cycles 5fs ≈ 2T long. For larger pulse du-
ration the pulse gets more symmetrical which leads to a reduced asymmetry in the electron
momentum distribution.
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Fig. 18: Asymmetry as a function of the carrier-envelope-phase for a 2,5 fs pulse and a 10 fs pulse. For
longer pulses the asymmetry becomes smaller. Note the different scaling in comparison to
figure 17.
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Fig. 19: Total number of electrons emitted to the left and right as a function of the carrier-envelope-
phase for two different pulse lengths (left) 2,5 fs and (right) 10 fs.
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3.2 Simple man’s model: Direct electrons

Using (near) circular polarization (0.9 < ε < 1) allows fo an intriguing experiment known as
attoclock. Extend your code to two dimensions and calculate the photoelectron momentum
distribution for a circularly polarized few-cycle pulse.

Perform the calculations for He ionized by a 4-fs laser pulse at 800 nm and 3 · 1014 W
cm2 peak

intensity. Present results for a large value of ellipticity (ε = Ey

Ex
= 0.95). Plot the final mo-

mentum distribution in two dimensions, along with the electric field and compeare the two.
Include focal volume averaging in order to obtain a distribution with a reasonable width.
Interpret your result.

Make a plot in which you relate the direction of the electric field vector (angle) at the time of
tunneling to the direction of electron emission (angle of final momentum). What happens
if you artificially introduce an ionization delay, i. e. assume that the electron spends some
time (e. g. 100 as) in the tunnel before it is accelerated by the laser field? What is the effect of
the CEP in this case?

Solution:

We first adapt our program to work in two dimension to allow circular polarization. For that
we simply Calculate a second electric field which has a phase difference of ∆ϕ = π/2 with
respect to the other and modify its amplitude to account for the ellipticity. This looks like
this:

[t,Ex]=get_field_time_sin2(Lambda , tau , intensity*ellipsy **2, cep , dt)
[t,Ey]=get_field_time_sin2(Lambda , tau , intensity , cep+np.pi/2, dt)

Now we calculate the transition rate for Helium using the intensity I =
√

E 2
x +E 2

y and deter-

mine the respective drift velocities vx,drift and vy,drift. We now drop the analytical calculation
of the drift velocity and implement a much faster method of integrating the electric field
using the power of numpy:

for j in range(len(t)):
vxdrift[j] = -np.sum(Ex[j:len(t)])*dt
vydrift[j] = -np.sum(Ey[j:len(t)])*dt

Now we create a grid of 200× 200 velocities ranging from the minimum to maximum drift
velocity. Similar to the approach for the energy spectrum of the electrons we assign every
grid point a number of emitted electrons by comparing the drift velocity at time t to the
yield in the time interval [t , t +dt ]. The resulting graph is shown in figure 20 (left).

We can repeat the calculations with intensities in a logarithmic range between 3 · 1011 W
cm2

and 3 · 1014 W
cm2 weighed with their respective intensity and sum up the results to obtain a

plot in the case of focal volume averaging. This is displayed on the right side of 20.
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Fig. 20: 2D momentum distribution of the electrons without (left) and with focal volume averaging
(right) for a carrier-envelope-phase of 0 and a pulse duration of 10 fs. We observe that the
electrons are mainly moving in positive x-direction. This is explained by the higher electron
yield in forward direction (c. f. 19 right) at CEP = 0. The y-distribution is nearly symmetric,
however the center of the circle does not correspond to the origin.

We also want to display the electric field amplitude in two dimensions for all times. This is
done in figure 21.
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Fig. 21: 2D plot of the electric field for all times.

We observe that the electric field in y-direction is symmetric which is in agreement with
the symmetric momentum distribution in y-direction. The electric field in x-direction is
not symmetric which leads to a asymmetric behaviour in the momentum distribution in
figure 20.

Now we want to relate the direction of the electric field vector at the tunnel time to the direc-
tion of electron emission. For both the electric field vector and the velocity we calculate the
angle with respect to the y-axis in the following way:
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def angle_to_y_axis(x, y):
v2 = np.array([vxdrift ,vydrift])
v2_u = v2/np.linalg.norm(v2)
v1_u = np.array([0,1]) # y-axis
if x >= 0:

v1_u = np.array([0,1])
return np.arccos(np.dot(v1_u , v2_u))

if x < 0:
v1_u = np.array([0,-1])
return np.arccos(np.dot(v1_u , v2_u)) + np.pi

Using this function we can plot the angle of electron momentum and electric field as a func-
tion of time. This is shown in figure 22. We observe that the emission angle at first coin-
cides with the electric field angle but drifts out of phase over time. We can now introduce an
ionization delay of 100as = 4a.u. which leads to a small shift of the emission angles of the
momentum.
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Fig. 22: Angle of electric field and drift momentum of the electrons for different times of tunneling.

Changing the CEP in this case leads to no qualitative change in the emission angles. It only
shifts the values along the “y-axis”. For a better visualization we can apply a phase unwrap
to the date in figure 22 which is shown in figure 22.

21



3.2 Simple man’s model: Direct electrons Strong Field Laser Physics

−4 −2 0 2 4

time t in fs

5

10

15

20

25

an
gl

e
φ

w
.r

.t
y
-a

x
is

in
ra

d

Electric field

velocity, Delay: 0

velocity, Delay: 100as

Fig. 23: Unwrapped angle of electric field and drift momentum of the electrons for different times of
tunneling.
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4 Recollisions

4.1 Return energy and return time

In a linearly polarized laser field, electrons emitted after the field has passed its peak value
can recollide with the parent ion, roughly a 3/4 of an optical cycle later. This idea links laser-
matter interactions with collision physics and is responsible for characteristic effects, in-
cluding HHG, high-order ATI (above threshold ionization) and NSDI (non-sequential double
ionization).

Define the electric field of a linearly polarized femtosecond laser pulse and calculate numer-
ically the recollision time and energy of recolliding electrons (in units of the ponderomotive
potential UP ), as a function of the ionization time. Plot the relationship between travel time
(i. e. the time difference between tunneling and recollision) and return energy. What is the
consequence of the relationship between the return energy and the return time for the XUV
radiation generated by HHG? (bonus)

Solution:

As in the previous exercises, we start with our laser pulse which has a cos2 shaped envelope

with a 10 fs FWHM duration, a wavelength of 800 nm (e. g. Ti:Sa), an intensity of 3 · 1014 W
cm2 .

Now we can simply solve the equation of motion for the electron for all tunneling times in
the laser cycle. We can determine the recollision time by looking, when a sign change of
the electron position x occurs. This can be implemented numerically by taking the sign of
the array of positions, shifting it by one place and subtracting it from the original one. A
sign change can then be identified by looking at the maximum (of the absolute value) of the
resulting array:

for i in range(len(t)):
x,v = integrate(i, E, dt)

signchange = abs(np.roll(np.sign(x), 1) - np.sign(x)) # shift sign
array by 1 step

signchange[0] = 0 # set first index to zero (sign change between
first and last element)

index = np.argmax(signchange) # find position of sign change
if np.max(signchange) == 0: # if no sign change occurs , set t1=t

index = i
t1[i] = t[index]

We can then then plot the time difference of ionization and recollision for every point in
time. This is shown in figure 24.

We can see that the return time changes periodically with a frequency of the laser field. Sev-
eral high spikes occur for larger times which seem a bit mysterious. They all indicate a recol-
lision of the electrons when the laser pulse has passed. We assume that these are numerical
artifacts and the highest possible return time is about 100 a.u..
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Fig. 24: Recollision times of the electrons as a function of the ionization time t shown in blue. The
electric field is also displayed qualitatively. We observe that a maximum of travelling time
((t1 − t ) ≈ 110a.u.) occurs when the amplitude of the electric field is at its maximum. This
maximum travelling time corresponds to one optical cycle.

We can also calculate the return energy by using equation (5.7) from the script

E1 = m

2
v2 = e2

2m
(A(t0)− A(t1))2. (4.1)

If we want to express the return energy in units of the ponderomotive potential we can use
the relation A2

0 = 4UP (in atomic units).
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Fig. 25: Energy of the recolliding electrons in unit of the ponderomotive potential. We observe the
limits E < 3.17UP that were derived in the lecture (chapter 5.3). More precisely the maximum
of the return energy is 3.163UP .
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The vector potential can be obtained by performing the integral

A(t0) =−
∞̂

t0

E(t ′)dt ′ . (4.2)

The resulting energy is displayed in figure 25. However, we still need to clarify how we ob-
tained the ponderomotive potential UP for our laser parameters. For that we used equation
(1.30) from the script

UP = 0.09337I ·λ2 = 18eV (4.3)

where I is given in units W
cm2 and λ in µm.

We can also show the relationship between the return energy and the return time in a nice
looking plot (figure 26).
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Fig. 26: Relationship between return energy (in units of UP ) and return time t1 − t . We can see that
medium return times correspond to the highest energies.
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4.2 Backscattered electrons

The electron can also scatter elastically. Making use of the calculations developed in 4.1,
extend your 1D simulations to accommodate back-scattering. For back-scattering, assume
that the electron is reflected upon recollision, i. e. v(t1 +dt ) =−v(t1), where t1 is the recolli-
sion time.

Calculate photoelectron spectra (in 1D) that contain contributions from both direct and
rescattered electrons, where you assume that 1 % of recolliding electrons back-scatter. Use
laser parameters of your choice. Plot the resulting photoelectron spectrum on a logarithmic
scale. Find the cut-off energies of direct and backscattered electrons and compare to your
expectations.

As in problem 3.1, plot the CEP-dependent asymmetry A(E ,ϕ) = R−L
R+L , where R and L are

the number of electrons emitted to the right or left, respectively, as a function of CEP and
kinetic energy. Describe the characteristic signature of back-scattered electrons in the CEP-
dependent asymmetry. How can this be utilized to measure the (relative) CEP?

Solution:

We use the same laser parameters as before (I = 3·1014 W
cm2 , τ= 10fs,λ= 800nm) for this task.

The ionizing atom was chosen to be Xenon. We now modify the scheme for the calculation
of electron spectra to account for backscattering. We add an additional condition, that the
drift velocity of electrons returning to the atom is determined by

mvdrift = 2A(t1)− A(t0) (4.4)

(in atomic units). Then we assume that only 1 % of these electrons rescatter, while the rest
recombines with the atom and is lost. Then we sort the electrons whether they are emitted
to the left or right and present the results in figures 27 and 28.
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Fig. 27: Photoelectron spectra separated into two parts containing both direct and rescattered elec-
trons.
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For direct electrons we observe the same behaviour as in section where we applied the sim-
ple mans model to calculate photoelectron spectra. The cut-off of the direct electrons occurs
at 35 eV. The cut-off energy of backscattered (collision) electrons is determined by the pon-
deromotive potential. It appears at Emax = 180eV = 11.25UP . This value seems rather odd
because the derived maximum in the lecture states, that Emax should be around 10UP . We
also plotted the spectrum for left and right emitted photons as shown in figure 28.
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Fig. 28: Photoelectron spectra separated into two parts containing both direct and rescattered elec-
trons. Now we also look at the different emission directions of the electrons, left and right,
respectively.

Now we can also perfom the calculations for various values of the CEP. We choose an in-
terval of [0,2π] with 150 sample points. The total emitted photelectrons and the respective
asymmetry are displayed in figure 29.
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Fig. 29: Left: Total number of electrons emitted to the left and right as a function of CEP.
Right: Calculated asymmetry A(ϕ) = (R −L)/(R +L).

Now we can also take a look at the Asymmetry also as a function of final kinetic energy. For
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that we make a two dimensional plot and indicate the asymmetry with colours. First we can
display the electrons emitted to the left and right (figure 30).
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Fig. 30: Left (left figure) and right (right figure) emitted electrons as a function of CEP and final kinetic
energy. The colours are rescaled on a logarithmic (log10) scale.

Finally we can also plot the resulting asymmetry as a function of Energy and CEP (figure 31).
The maximum final kinetic energy is about Emax = 320eV = 20UP which is twice of what we
would expect based on the lecture. I am not sure what could have caused this discrepancy
since the energy in figure 25 was calculated correctly.
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Fig. 31: Calculated asymmetry as a function of final kinetic energy and CEP. The white areas corre-
spond to energies, where no electrons are emitted and the Asymmetry is undefined. We
observe that the maximum kinetic energy strongly depends on the carrier envelope phase
(which I do not really understand).

Now we want to discuss how we can utilize the results to measure the relative CEP of our
laser pulse. For that we take a look back to figure 28 where we plotted the different emission
directions of rescattered electrons. For larger energies we see two asymmetry for left and
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right photoelectrons which differ in sign. Looking at figure 31 we should expect that these
regions would appear and be shifted in phase. Now we could plot the asymmetry for both
regions in a 2D plot to obtain a Lissajous figure. With that we could potentially obtain the
carrier envelope phase shift.
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5 Interference effects

5.1 ATI peaks and intracycle interference

The above threshold ionization peaks can be understood as constructive interferences of
electron trajectories launched at times (t0, t0 +T, t0 + 2T, . . .). In order calculate the photo-
electron yield arising from all interfering trajectories, we consider not only the ionization
rate R(t0) but also the classical action

S(t0) =
∞̂

t0

L [xt0 (t )]dt , (5.1)

where L [xt0 (t )] is the Lagrange function of a trajectory xt0 (t ) that describes the motion of
an electron tunneling at time t0. The yield for electrons with drift momentum p is given by
the coherent sum over all contributing trajectories that result in drift momentum p

Y (p) = ∣∣ ∑
−A(t0)=p

√
R(t0)exp

(
i
S(t0)

ℏ

)∣∣2. (5.2)

Extend your code to calculate the classical action for direct electrons. Utilize the action to
calculate a photoelectron spectrum of direct electrons that contains interference effects. Plot
the electron spectrum for laser parameters of your choice. Specify the parameters.

Did you discover the ATI peaks? What happens if you vary the laser wavelength or the inten-
sity?

Solution:

We start again by first stating all relevant laser parameters that were used for the numerical
simulation. We use a wavelength of λ= 800nm with our laser pulse which has a cos2 shaped

envelope with a 10 fs FWHM duration and an intensity of 1014 W
cm2

1. The atom of choice

was Xenon.

We start with the definition of the Lagrange function that was given in the lecture as

L = 1

2
mv2 +eE x

= 1

2
[A(t )− A(t0)]2 +E (t )

A(t0)(t − t0)−
tˆ

t0

A(t )dt

. (5.3)

With the second expression we only need to calculate the vector potential once in order to
calculate the Lagrange function for all ionization times. This can be implemented in the
following way

1We take a lower intensity than before in order to prevent saturation effects.
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def action(A, E, t, t0): # script page 102
dt = t[1] - t[0]
A0 = A[t == t0]
L = np.zeros_like(t)
t0_index = np.argmin(abs(t-t0))
for i in range(t0_index , len(t)):

L[i] = 0.5*(A[i]-A0)** 2 + E[i]*(A0*(t[i]-t0)- np.sum(A[
t0_index:i])*dt)

return np.sum(L)*dt

The calculation of the action is rather involved and takes a lot of time, because for every
ionization time t0 one must calculate L [xt0 (t )] for all t > t0 and sum them up to obtain the
action. Therefore in the numerical simulation I could only analyze short pulses with a low
sample size (2000) in order to have reasonable computation times.

We can now calculate the action for all ionization times t0 and get a result that is displayed
in figure 32
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Fig. 32: Classical action of the ionized electrons for different ioniziation times t0 (blue) for a 10 fs pulse
at 800 nm. The electric field amplitude is also plotted in green. We observe that the action
oscillates in a periodic fashion with twice the freqeuncy of the laser pulse. We observe local
minima in the action, when the electric field has a maximum or minimum. For larger times
the action goes to zero as expected.

Now we can obtain the electron spectrum in a similar way as we already did in the previous
exercises. The only difference is that the yield is given by (5.2). Again we calculate the drift
velocity of electrons and sum up all terms with drift energy E ∈ [Edrift,Edrift +dE ].

def calc_spectrum(S, Nspec , Lambda , intensity):
[t,E] = get_field_time_sin2(Lambda , tau , intensity , cep , dt)
T = tunnel.calculateTransitionRate(t,E,l, Z, Ip)
R = np.sum(T, axis=0)
vdrift = np.zeros_like(t)
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for j in range(len(t)):
vdrift[j] = -np.sum(E[j:])*dt

Edrift = 0.5*vdrift **2
Emin = np.min(Edrift)
Emax = np.max(Edrift)

Energy = np.linspace(Emin , Emax , Nspec)
Spectrum = np.zeros_like(Energy , dtype=complex)
Yield = np.sqrt(R)*np.exp(1j*S)

for i in range(len(Edrift)):
j = round (( Edrift[i]-Emin)/(Emax-Emin)*(Nspec-1))
Spectrum[j] += Yield[i]

return Energy*27.2, np.abs(Spectrum)** 2

Since we used Xenon as the ionizing atom, we had several ionization states. For the transition
rate R we summed up all tunnel rates T of the different ionization states. The spectrum was
divided into 500 grid points. The resulting spectrum as function of Energy is displayed in
figure 33.
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Fig. 33: Electron spectra (of direct electrons) for different laser intensities at 800 nm. For better vi-
sulization, the scales were adjusted for the first two spectra. We observe that for lower intensi-
ties the total yield is much lower but shifted towards lower energies. For the given wavelength
the distance of the ATI peaks should be 1,55 eV.

We can see that the appearing peaks in the spectrum are not equidistant. However, the main
peaks of the spectrum are indeed one photon energy (1,55 eV) apart which indicates, that
these are indeed ATI peaks. We do not observe channel closing at higher intensities. This
may be explained by the fact that we used femtosecond pulses for the calculations. Accord-
ing to equation (6.3) in the script the gained electron energy (for fs-pulses) is given by

Em = mℏω−EIP −UP. (5.4)
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Since the ponderomotive potential UP depends on the intensity, the position of the peaks
in the energy spectrum is different for the various intensities shown in figure 33. Then it is
difficult to identify peaks that correspond to the same order of multiphoton interaction.

Now we also vary the laser wavelength and use a laser intensity of 2 · 1014 W
cm2 . This yields

spectra displayed in figure 34. We would expect that for longer wavelengths the observed ATI
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Fig. 34: Electron spectra (of direct electrons) for different laser wavelengths at 2 · 1014 W
cm2 . For higher

wavelengths the maximum gained energy is higher.

peaks would be getting closer since the photon energy is lower. For some unknown reason
we do not observe this effect.
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