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Recap of quantum mechanics Advanced Quantum mechanics

1 Recap of quantum mechanics

1.1 Harmonic oscillator spectrum

Compute the energy spectrum of the harmonic oscillator

H = p2

2m
+ mω2x2

2
(1.1)

using the ladder operators a, a† with

a =
√

mω

2ℏ

(
x + i

p

mω

)
(1.2)

Solution: At first the Hamiltonian H is expressed as a function of the ladder operators.
Therefore the product a†a is computed:

a†a = mω

2ℏ

[(
x − i

p

mω

)
·
(
x + i

p

mω

)]
= mω

2ℏ

(
x2 + p2

m2ω2
+ i

xp −px

mω

)
= mω

2ℏ

(
x2 + p2

m2ω2
− ℏ

mω

)
= 1

ωℏ

( mω2x2

2
+ p2

2m︸ ︷︷ ︸
=H

−ℏω
2

)

= H

ωℏ
− 1

2
. (1.3)

In the third step the relation for the commutator [x, px] = iℏ. Therefore the Hamiltonian can
be written as

H = ℏω
(

a†a + 1

2

)
. (1.4)

Another important relation is the commutator [a, a†] which can be derived by using (1.3)

[a, a†] = a a† −a†a =
(

H

ωℏ
+ 1

2

)
−

(
H

ωℏ
− 1

2

)
=1. (1.5)

The operator N := a†a is a Hermitian operator (because the Hamiltonian is hermitian) and
it therefore has only real eigenvalues. It can be easily checked, that N and H commute be-
cause H ∝ N+ const. This implies that N and H are compatible operators with the same
eigenvectors. Consider an eigenstate |λ〉 of N with eigenvalue λ

N |λ〉 =λ |λ〉 ⇒ H |λ〉 =
(
λ+ 1

2

)
|λ〉 . (1.6)

4



1.1 Harmonic oscillator spectrum Advanced Quantum mechanics

It can also be shown that λ is positive by calculating

〈λ|N |λ〉 = 〈λ|λ|λ〉 =λ〈λ|λ〉 =λ (1.7)

and comparing it with the definition of N = a†a〈
λ|a†a|λ

〉
= (a |λ〉)†(a |λ〉) = ||a |λ〉 ||2 ≥ 0. (1.8)

Furthermore the commutaror [N , a] can be calculated as

[N , a] = [a†a, a] = a† [a, a]︸ ︷︷ ︸
=0

+ [a†, a]︸ ︷︷ ︸
(1.5)= −1

a =−a. (1.9)

If the operator N a is applied to the state |λ〉 it follows

N a |λ〉 = (a N + [N , a]) |λ〉 = (a N −a) |λ〉 = (λ−1)a |λ〉 . (1.10)

It can be shown recursively that

N ak |λ〉 = (λ−k)ak |λ〉 , k ∈N. (1.11)

For values k >λ the eigenvalues of N would become negative which is in conflict with equa-
tion (1.8). Therefore there must be a k ∈N for which the eigenvalue is zero in order to stop the
following eigenvalues to become negative. This implies that λ must be a positive integer

N |λ〉 =λ |λ〉 ⇒ λ= n ∈N. (1.12)

The same calculation of (1.11) can be done with a† which leads to

N a†k |n〉 = (n +k)a†k |n〉 , k ∈N. (1.13)

Therefore all positive integers n+k ∈N are eigenvalues of N . Therefore the energy spectrum
of the harmonic oscillator can be written as (1.4)

H |n〉 = ℏω
(
n + 1

2

)
|n〉 , n ∈N. (1.14)
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1.2 Angular momentum spectrum Advanced Quantum mechanics

1.2 Angular momentum spectrum

Compute the eigenvalues of the orbital angular momentum L = r ×p

• Show [Li ,L j ] = iℏϵi j k Lk and [L2,L j ] = 0.

• Use the operators L± = Lx ± iLy to derive the spectrum (Hint: compute the commuta-
tors with Li and L2 and express L2 in terms of L± and Lz).

Solution: The cross product of r and p can be written using EINSTEINS sum convention as
follows:

Li = ϵi j k x j pk . (1.15)

By using [AB ,C ] = A[B ,C ]+ [A,C ]B the commutator [Li ,L j ] can be expressed as

[Li ,L j ] = ϵi abϵ j cd [xa pb , xc pd ]

= ϵi abϵ j cd (xa[pb , xc pd ]+ [xa , xc pd ]pb)

= ϵi abϵ j cd (xa xc [pb , pd ]︸ ︷︷ ︸
=0

+xa [pb , xc ]︸ ︷︷ ︸
=−iℏδbc

pd +xc [xa , pd ]︸ ︷︷ ︸
=iℏδad

pb + [xa , xc ]︸ ︷︷ ︸
=0

pd pb)

= iℏϵi abϵ j cd (−xa pdδbc +xc pbδad )

= iℏ
(−ϵi abϵ j bd xa pd +ϵi abϵ j ca xc pbδad

)
= iℏ

(
ϵi abϵ j db xa pd +ϵbi aϵ j ca xc pbδad

)
= iℏ

(
(δi jδad −δi dδ j a)xa pd + (δ j bδi c −δbcδi j )xc pb

)
= iℏ

(
���xa pa −x j p j +xi p j −���xc pc

)
= iℏ

(
xi p j −x j pi

)= iℏϵi j k Lk . (1.16)

The expression [L2,L j ] = 0 can be shown explicitly for one component Lz . It follows

[L2,Lz] = [L2
x +L2

y +L2
z ,Lz] = [L2

x ,Lz]+ [L2
y ,Lz]+ [L2

z ,Lz]︸ ︷︷ ︸
=0

= Lx [Lx ,Lz]︸ ︷︷ ︸
=−iℏLy

+ [Lx ,Lz]︸ ︷︷ ︸
=−iℏLy

Lx +Ly [Ly ,Lz]︸ ︷︷ ︸
=iℏLx

+ [Ly ,Lz]︸ ︷︷ ︸
=iℏLx

Ly

= iℏ(−LxLy −Ly Lx +Ly Lx +LxLy ) = 0. (1.17)

This can be shown analogously for Lx and Ly as well.

Next the commutator of the z-component of the angular momentum operator and the lad-
der operators is computed

[Lz ,L±] = Lz(Lx ± iLy )− (Lx ± iLy )Lz

= LzLx ± iLzLy −LxLz ∓ iLy Lz

= [Lz ,Lx]︸ ︷︷ ︸
=iℏLy

±i [Lz ,Ly ]︸ ︷︷ ︸
=−iℏLx

= ℏ(iLy ±Lx) =±ℏ(±iLy +Lx)

=±ℏL±. (1.18)
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1.2 Angular momentum spectrum Advanced Quantum mechanics

Because of the fact that L2 and Lz commute they have the same eigenvectors |Ψ〉. The eigen-
value of Lz can be written as

Lz |m〉 = ℏm |m〉 . (1.19)

Now consider the product LzL± applied to an eigenstate |m〉. Using equation (1.18) this can
be expressed as

LzL± |m〉 = ([Lz ,L±]+L±Lz) |m〉
(1.18)= (±ℏL±+L±Lz) |m〉
(1.19)= ℏ(m ±1)L± |m〉 . (1.20)

This result is compared to Lz |m +1〉 = ℏ(m+1) |m +1〉 which leads to the conclusion that L+
raises the state |m〉 to |m +1〉

L+ |m〉 =α |m +1〉 . (1.21)

However, since L2 |m〉 = (L2
x + L2

y ) |m〉 + m2ℏ2 |m〉 there must exist a maximum m = mmax

because m2ℏ2 ≤ L2 which implies

L+ |mmax〉 = 0. (1.22)

The operator L2 can be expressed as a combination of L± and Lz . Lets first look at the product
L−L+:

L−L+ = (Lx − iLy )(Lx + iLy ) = L2
x +L2

y + i [Lx ,Ly ]︸ ︷︷ ︸
=iℏLz

= L2
x +L2

y −ℏLz

⇒ L2
x +L2

y = L−L++ℏLz

⇒ L2 = L−L++L2
z +ℏLz . (1.23)

The operator L2 is now applied to the eigenstate of maximum value mmax

L2 |mmax〉 = L− L+ |mmax〉︸ ︷︷ ︸
=0

+(L2
z +ℏLz) |mmax〉

= (L2
z +ℏLz) |mmax〉 = (m2

maxℏ2 +mmaxℏ2) |mmax〉
= ℏ2mmax(mmax +1) |mmax〉 . (1.24)

The same procedure (equation (1.21) to (1.24)) can be performed analogously for L− which
leads to a minimum value mmin with L− |mmin〉 = 0 and

L2 |mmin〉 = ℏ2mmin(mmin −1) |mmin〉 . (1.25)

Because L2 and Lz commute, the state |Psi 〉 is an eigenfunction of L2 and its eigenvalue is
independent of m. Therefore

ℏ2mmax(mmax +1) = ℏ2mmin(mmin −1)

⇒ mmax =−mmin. (1.26)

The number mmax can be denoted as l . The energy spectrum of the operator of angular
momentum can therefore be written as

Lz |lm〉 = mℏ |lm〉 m =−l ,−l +1, . . . , l −1, l (1.27)

L2 |lm〉 = ℏ2l (l +1) |lm〉 . (1.28)
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1.3 Hydrogen atom spectrum Advanced Quantum mechanics

1.3 Hydrogen atom spectrum

Solve the SCHRÖDINGER equation for the H-atom’s stationary states. Assume the Hamilto-
nian

H = p2

2µ
+ Z e2

r
=− ℏ2

2µ
∆+ Z e2

r
, (1.29)

express the result in terms of the BOHR radius and discuss the degeneracy. Discuss the sym-
metry of the wavefunction in the ground state.

Solution: The stationary SCHRÖDINGER equation can be written in the following way:(
− ℏ2

2µ
∆+ Z e2

r

)
Ψ(r ) = EΨ(r ), (1.30)

whereas the Laplacian operator can be written in spherical coordinates as follows

∆= 1

r 2

∂

∂r

(
r 2 ∂

∂r

)
+ 1

r 2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

r 2 sin2ϑ

∂2

∂ϕ2
. (1.31)

It is assumed that the the solutionΨ(r ) can be separated in the following way:

Ψ(r,ϑ,ϕ) = R(r )Θ(ϑ)Φ(ϕ). (1.32)

Therefore the SCHRÖDINGER equation can be expressed as

∆Ψ=−2µ

ℏ2

(
E + Z e2

r

)
Ψ(

1

r 2

∂

∂r

(
r 2 ∂

∂r

)
+ 1

r 2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

r 2 sin2ϑ

∂2

∂ϕ2

)
Ψ=−2µ

ℏ2

(
E + Z e2

r

)
Ψ

ΘΦ

r 2

d

dr

(
r 2 dR

dr

)
+ RΦ

r 2 sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ RΘ

r 2 sin2ϑ

d2Φ

dϕ2
=−2µ

ℏ2

(
E + Z e2

r

)
RΘΦ. (1.33)

Both sides can be multiplied by r 2 sin2ϑ/Ψ(r,ϑ,ϕ):

sin2ϑ

R

d

dr

(
r 2 dR

dr

)
+ sinϑ

Θ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ 1

Φ

d2Φ

dϕ2
=−2µ

ℏ2
r 2 sin2ϑ

(
E + Z e2

r

)
sin2ϑ

R

d

dr

(
r 2 dR

dr

)
+ sinϑ

Θ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ 2µ

ℏ2
r 2 sin2ϑ

(
E + Z e2

r

)
︸ ︷︷ ︸

Function of r,ϑ

= − 1

Φ

d2Φ

dϕ2︸ ︷︷ ︸
Function of ϕ

. (1.34)

Since the left hand side is only dependent on r,ϑ and the right side is only dependent on ϕ,
both sides must be equal to a constant, which is denoted as m2, because the equation must
be valid for every (r,ϑ,ϕ). This leads to

−m2 = 1

Φ

d2Φ

dϕ2
⇒ Φ(ϕ) = A ·exp

(
imϕ

)
. (1.35)
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1.3 Hydrogen atom spectrum Advanced Quantum mechanics

BecauseΦ(ϕ) =Φ(ϕ+2π) is periodic

exp
(
imϕ

)= exp
(
im(ϕ+2π)

)= exp
(
imϕ

)
exp(im2π)︸ ︷︷ ︸

=1

⇒ m ∈Z. (1.36)

The functionΦ(ϕ) can be normalized in the following way

2πˆ

0

Φ(ϕ)Φ∗(ϕ)dϕ= A2 ·2π
!= 1, (1.37)

which leads to the solution

Φ(ϕ) = 1p
2π

exp
(
imϕ

)
. (1.38)

The left hand side of (1.34) can be separated again into two parts, which are only dependent
on r or ϑ by dividing by sin2ϑ

1

R

d

dr

(
r 2 dR

dr

)
+ 2µ

ℏ2
r 2

(
E + Z e2

r

)
︸ ︷︷ ︸

Function of r

=− 1

Θsinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ m2

sin2ϑ︸ ︷︷ ︸
Function of ϑ

. (1.39)

Both sides of the equation are set to a second constant denoted asλ. The solution of the right
hand side of equation (1.39) leads in combination with (1.38) to the spherical harmonics:

Ylm(ϑ,ϕ) =
√

1

4π

√
2l +1

4π

(l −m)!

(l +m)!
P m

l (cosϑ)exp
(
imϕ

)
(1.40)

with λ= l (l +1) and P m
l (x) an associated legendre polynomial

P m
l (x) = (−1)m

2l l !
(1−x2)m/2 dl+m

dx l+m

(
x2 −1

)l
. (1.41)

The left hand side of equation (1.39) can be written as

1

r 2

d

dr

(
r 2 dR

dr

)
+ 2µ

ℏ2

(
E + Z e2

r

)
R = l (l +1)

R

r 2

1

r 2

d

dr

(
r 2 dR

dr

)
+ 2µ

ℏ2

(
E + Z e2

r
− l (l +1)ℏ2

2µr 2

)
R = 0 (1.42)
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Postulates Advanced Quantum mechanics

2 Postulates

2.1 Basic operator properties

Show that:

• given two complete orthonormal bases A = {|α〉} and B = {
∣∣β〉

}, the operator U associ-
ated to the change of basis from A to B is unitary, and is expressed as

U =∑
k

∣∣∣βk
〉〈

αk
∣∣∣ ; (2.1)

• the trace (operator) Tr (X ) =∑
α 〈α|X |α〉 is invariant under change of basis.

Solution: Lets first show that the operator U performs the change of basis:

U |α〉 =∑
k

∣∣∣βk
〉〈

αk |α
〉

=∑
k

∑
j

∣∣∣βk
〉〈

αk |c j |α j
〉

=∑
k

∑
j

c j

∣∣∣βk
〉〈

αk |α j
〉

︸ ︷︷ ︸
=δ j k

=∑
k

ck

∣∣∣βk
〉
= ∣∣β〉

. (2.2)

In order to show that U is a unitary operator we compute the product UU † by using the
orthonormality and completeness of A = {|α〉} and B = {

∣∣β〉
}:

UU † =∑
k

∣∣∣βk
〉〈

αk
∣∣∣∑

j

(∣∣∣β j
〉〈

α j
∣∣∣)† =∑

k

∣∣∣βk
〉〈

αk
∣∣∣∑

j

∣∣∣α j
〉〈

β j
∣∣∣

=∑
k

∑
j

∣∣∣βk
〉〈

αk |α j
〉

︸ ︷︷ ︸
=δ j k

〈
β j

∣∣∣
=∑

k

∣∣∣βk
〉〈

βk
∣∣∣=1. (2.3)

The invariance of the trace operator can be shown by using the completeness of A = {|α〉}
and B = {

∣∣β〉
}, where we can write the trace in the following way:

Tr (X ) =∑
k

〈
αk |X |αk

〉
=∑

k j

〈
αk |β j

〉〈
β j |X |αk

〉
=∑

k j

〈
β j |X |αk

〉〈
αk |β j

〉
=∑

j

〈
β j |X1|β j

〉
= Tr (X ) (2.4)
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2.2 Schwarz inequality Advanced Quantum mechanics

2.2 Schwarz inequality

1. Prove the Schwarz inequality

〈α|α〉〈β|β〉≥ |〈α|β〉 |2. (2.5)

Hint: First, observe that (〈α| +λ∗ 〈
β
∣∣) · (|α〉 +λ ∣∣β〉

) ≥ 0 holds for any complex num-
ber λ; then choose λ in such a way that the above inequality reduces to the Schwarz
inequality.

2. Show that the equality sign in the generalized uncertainty relation
〈

(∆A)2
〉〈

(∆B)2
〉 ≥

1
4 | 〈[A,B ]〉 |2 holds if the state in question satisfies

∆A |α〉 =λ∆B |α〉 (2.6)

with λ purely imaginary.

3. Explicit calculations using the usual rules of wave mechanics show that the wave func-
tion for a Gaussian wave packet given by

〈
x ′|α〉= (2πd 2)−1/4 exp

[
i
〈

p
〉

x ′

ℏ
− (x ′−〈x〉)2

4d 2

]
(2.7)

satisfies the minimum uncertainty relation√〈
(∆x)2

〉√〈
(∆p)2

〉= ℏ
2

. (2.8)

Prove that the requirement
〈

x ′|∆x|α〉= λ〈
x ′|∆p|α〉

, where λ is an imaginary number,
is indeed satisfied for such a Gaussian wave packet, in agreement with Part 2.

1. Solution: First we rewrite the relation given in the hint:

0 ≤ (〈α|+λ∗ 〈
β
∣∣) · (|α〉+λ ∣∣β〉

)

= 〈α|α〉+ |λ|2 〈
β|β〉+λ∗ 〈

β|α〉+λ〈
α|β〉

. (2.9)

In order to arrive at the Schwarz inequality we need the product |〈α|β〉 |2. Therefore we aim
for a λ which delivers this term when squared. Since the inequality to prove consists of only
two terms we need to ensure that some terms cancel out. This can be achived by choosing

λ=−
〈
β|α〉〈
β|β〉 . (2.10)

This leads to the following result when λ is substituted into (2.9)

0 ≤ 〈α|α〉+ |〈β|α〉 |2
|〈β|β〉 |2 〈

β|β〉− 〈
β|α〉∗〈
β|β〉 〈

β|α〉− 〈
β|α〉〈
β|β〉 〈

α|β〉
= 〈α|α〉+

�
�

�
��|〈β|α〉 |2〈

β|β〉 −
�
�

�
��|〈β|α〉 |2〈

β|β〉 − |〈β|α〉 |2〈
β|β〉

⇒ |〈β|α〉 |2〈
β|β〉 ≤ 〈α|α〉 ⇒ 〈α|α〉〈β|β〉≥ |〈β|α〉 |2 (2.11)
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2.2 Schwarz inequality Advanced Quantum mechanics

2. Solution: The assumption that λ is purely imaginary means that λ = −λ∗. The devia-
tion ∆A ist given by

∆A = A− 〈A〉︸︷︷︸
〈α|A|α〉

, ∆B = B − 〈B〉︸︷︷︸
〈α|B |α〉

. (2.12)

Then we first evaluate the right hand side of the equation. The commutator [∆A,∆B ] can be
written as

[∆A,∆B ] = [A−〈A〉 ,B −〈B〉] = [A,B −〈B〉]− [〈A〉 ,B −〈B〉]︸ ︷︷ ︸
=0

= [A,B ]− [A,〈B〉]︸ ︷︷ ︸
=0

. (2.13)

We used the fact, that the commutator with a scalar (〈A〉 ,〈B〉) is zero. Now we can write the
right hand side in the following way:

〈[A,B ]〉 = 〈α|[A,B ]|α〉 = 〈α|∆A∆B −∆B∆A|α〉 (2.14)

= 〈
α|λ∗(∆B)2 −λ(∆B)2|α〉

=−2λ
〈

(∆B)2〉
⇒ 1

4
| 〈[A,B ]〉 |2 =λλ∗|〈(∆B)2〉 |2 =−λ2|〈(∆B)2〉 |2 (2.15)

The left hand side can be evaluated as〈
(∆A)2〉〈

(∆B)2〉=−λ2|〈(∆B)2〉 |2, (2.16)

which is indeed equal to the left hand side.

3. Solution: In order to prove the requirement we calculate both sides of the equation
and find an imaginary λ. We start the left hand side〈

x ′|∆X |α〉= 〈
x ′|X −〈X 〉 |α〉= x ′ 〈x ′|α〉−〈x〉〈x ′|α〉

= (x ′−〈x〉)〈x ′|α〉
. (2.17)

For the calculation of the right side we use the momentum operator in position space can be
expressed as p =−iℏ∂x ′

〈
x ′|∆P |α〉=−iℏ

∂

∂x ′
〈

x ′|α〉
︸ ︷︷ ︸−

〈
p

〉〈
x ′|α〉

− iℏ
(

i
〈

p
〉

ℏ
− (x ′−〈x〉)

2d 2

)〈
x ′|α〉= [〈

p
〉+ iℏ

2d 2
(x ′−〈x〉)

]〈
x ′|α〉

〈
x ′|∆P |α〉= iℏ

2d 2
(x ′−〈x〉)〈x ′|α〉

. (2.18)

This leads to the following result:

〈
x ′|∆P |α〉 iℏ

2d 2

〈
x ′|∆X |α〉

, with λ= iℏ
2d 2

. (2.19)
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2.3 Spin 1/2 operators and commutators Advanced Quantum mechanics

2.3 Spin 1/2 operators and commutators

1. Write down the 2×2 matrix representation of Si in the basis that diagonalizes Sz .

2. Verify all the commutators between each pair of Si ,S2

3. Defining the ladder operator as S± = Sx ± iSy , show that they are not hermitian, write
down their representation in the Sz basis and determine their action upon the eigen-
vectors of Sz .

Solution: The matrix representation of Sz can be determined using the following for-
mula:

A =∑
a′

a′ ∣∣a′〉〈
a′∣∣⇒ Sz = ℏ

2
(|+〉〈+|− |−〉〈−|) = ℏ

2

(
1 0
0 −1

)
. (2.20)

The basis vectors |Sx ;±〉 and
∣∣Sy ;±〉

can be written in the following way:1

|Sx ;±〉= 1p
2

(|+〉± |−〉) (2.21)∣∣Sy ;±〉= 1p
2

(|+〉± i |−〉). (2.22)

Using equation (2.20) we can write Sx and Sy as

Sx = ℏ
2

(|Sx ;+〉〈Sx ;+|−|Sx ;−〉〈Sx ;−|) (2.21)= ℏ
2

(|−〉〈+|+ |+〉〈−|) (2.23)

Sy = ℏ
2

(
∣∣Sy ;+〉〈

Sy ;+∣∣− ∣∣Sy ;−〉〈
Sy ;−∣∣) (2.22)= iℏ

2
(|−〉〈+|− |+〉〈−|). (2.24)

Therefore the matrix representation of both operators are as follows:

Sx = ℏ
2

(
0 1
1 0

)
, Sy = ℏ

2

(
0 −i
i 0

)
. (2.25)

The commutators between the Si and S2 can be verified by noting that [Si ,S j ] = iℏεi j k Sk .
Then the commutation relations can be shown analogously to (1.17)

[S2,Sz] = [S2
x +S2

y +S2
z ,Sz] = [S2

x ,Sz]+ [S2
y ,Sz]+ [S2

z ,Sz]︸ ︷︷ ︸
=0

= Sx [Sx ,Sz]︸ ︷︷ ︸
=−iℏSy

+ [Sx ,Sz]︸ ︷︷ ︸
=−iℏSy

Sx +Sy [Sy ,Sz]︸ ︷︷ ︸
=iℏSx

+ [Sy ,Sz]︸ ︷︷ ︸
=iℏSx

Sy

= iℏ(−SxSy −Sy Sx +Sy Sx +SxSy ) = 0. (2.26)

Alternatively you can compute S2

S2 = S2
x +S2

y +S2
z =

3ℏ2

2

(
1 0
0 1

)
. (2.27)

1Sakurai: Modern Quantum mechanics, p.26
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2.4 Beam of Spin 1/2 atoms Advanced Quantum mechanics

It can be seen, that S2 is proportional to the identity matrix, which commutes with every
matrix. Therefore the commutators must be zero.

In order to show that the ladder operators are not hermitian, we first show, that Sx and Sy are
hermitian, which can be immediately seen by computing the hermitian conjugate of (2.25)

S†
x = ℏ

2

(
0 1
1 0

)
, S†

y =
ℏ
2

(
0 −i
i 0

)
. (2.28)

Then we can write the hermitian conjugate of S± as

S†
± = (Sx ± iSy )† = S†

x + (iSy )† = Sx ∓ iSy ̸= S±. (2.29)

The representation of the ladder operators in the Sz basis can be derived by using (2.23)
and (2.24)

Sx ± iSy = ℏ
2

[(|−〉〈+|+ |+〉〈−|)± i2(|−〉〈+|− |+〉〈−|)]. (2.30)

Therefore the ladder operators result in

S+ = ℏ |+〉〈−| , S− = ℏ |−〉〈+| . (2.31)

Their action on the eigenvectors |+〉 and |−〉 of the z-component of the spin are therefore

S+ |−〉 = ℏ |+〉〈−|−〉 = ℏ |+〉 , S+ |+〉 = ℏ |+〉〈−|+〉 = ℏ |0〉 (2.32)

S− |+〉 = ℏ |−〉〈+|+〉 = ℏ |−〉 , S− |−〉 = ℏ |−〉〈+|−〉 = ℏ |0〉 . (2.33)

The S+ operator raises the |−〉 state to |+〉, whereas the S− operator does the opposite. Low-
ering the |−〉 state and rising the |+〉 state leads to a nullket.

2.4 Beam of Spin 1/2 atoms

A beam of spin 1
2 atoms goes through a series of Stern-Gerlach-type measurements as fol-

lows

1. The first measurement accepts sz = ℏ/2 atoms and rejects sz =−ℏ/2 atoms.

2. The second measurement accepts sn = ℏ/2 atoms and rejects sn =−ℏ/2 atoms, where
sn is the eigenvalue of the operator S ·n̂, with n̂ making an angle β in the xz-plane with
respect to the z-axis.

3. The third measurement accepts sz =−ℏ/2 atoms and rejects sz = ℏ/2 atoms.

What is the intensity of the final sz =−ℏ/2 beam when the sz = ℏ/2 beam surviving the first
measurement is normalized to unity? How must we orient the second measuring apparaturs
if we are to maximize the intensity of the final sz =−ℏ/2 beam?

14



2.4 Beam of Spin 1/2 atoms Advanced Quantum mechanics

Solution: The rotation of the Sz apparatus can be interpreted as a rotation matrix Sn given
as

Sn = ℏ
2

(
cosβ sinβ
sinβ −cosβ

)
and s · n̂ =

Sx

Sy

Sz

 ·
sinβ

0
cosβ

 . (2.34)

The eigenvectors of Sn can be computed as

|n+〉= 1

2

(
cosβ+1

sinβ

)
, |n−〉= 1

2

(
1−cosβ
−sinβ

)
. (2.35)

Therefore the representation of the outcoming |n+〉 state in the Sz basis is

|n+〉= 1

2
(1+cosβ |+〉+ sinβ |−〉). (2.36)

The resulting intensity of the beam for a normalized |n+〉 state after the last measurement
with the Sz apparatus can be written as

〈−|n+〉= 1

4
sin2β. (2.37)

It can be seen that the maximum intensity occurs at β = π/2 which is an apparatus in x-
direction.
The solution can be also obtained by combining all three measurements into a single appa-
ratus. The initial state is

|S0〉 = a |+〉+b |−〉 . (2.38)

The final state can then be written in the following way:

|Sfinal〉 = |−〉〈−|n+〉〈n +|+〉〈+|S0〉
⇒ P = ||Sfinal〉 | = |〈−|n+〉|2︸ ︷︷ ︸

sin2(β/2)

| 〈n +|+〉|2︸ ︷︷ ︸
sin2(β/2)

| 〈+|S0〉 |2

= sin2
(
β

2

)
cos2

(
β

2

)
a2 = a2

4
sin2β. (2.39)

Since the state after the first measurement ist normalized, the factor a must be equal to one.
Then (2.39) and (2.37) coincide.
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3 Dynamics

3.1 Free particle evolution

Consider a particle in a generic potential V (x).

a) Prove the commutator relations[
xi ,F (p)

]= iℏ
∂

∂pi
F (p),

[
pi ,G(x)

]=−iℏ
∂

∂xi
G(x), (3.1)

where F,G are generic functions of the operators p and x respectively.

b) Show that for the Hamiltonian H = p2

2m +V (x) one obtains the equation

m
d2

dt 2
〈x〉 =−

〈
∇⃗∇∇V (x)

〉
(3.2)

i.e. expectation values follow the classical equation of motion with no ℏ appearing
(Ehrenfest theorem).

c) Specify the previous point to the free particle (V = 0) and prove the uncertainty relation〈
(∆xi )2〉

t

〈
(∆xi )2〉

t=0 ≥
ℏ2t 2

4m2
. (3.3)

d) Calculate the diffusion of the Gaussian wave packet using the propagator

K (x, t , x0, t0) =
√

m

2πiℏ(t − t0)
exp

(
i

ℏ
m

2

(x −x0)2

t − t0

)
(3.4)

and the wave function representation.

a.) Solution: The commutation relations can be proven by applying the commutator to a
generic state |Ψ〉 and multiplying with 〈x | to work in position space:〈

x |[pi ,G(x)]|Ψ〉= 〈
x |pi G(x)|Ψ〉−〈

x |G(x)pi |Ψ
〉

= ℏ
i

∂

∂xi
(G(x)Ψ(x))−G(x)

ℏ
i

∂

∂xi
Ψ(x)

= ℏ
i
Ψ(x)

∂

∂xi
G(x)+

��������
G(x)

ℏ
i

∂

∂xi
Ψ(x)−

��������
G(x)

ℏ
i

∂

∂xi
Ψ(x)

=−iℏ
∂

∂xi
G(x)Ψ(x) =

〈
x |− iℏ

∂

∂xi
G(x)|Ψ

〉
. (3.5)

The same procedure can be performed for the other commutator, but we evaluate it in mo-
mentum space by using that xi = iℏ∂pi〈

p|[xi ,F (p)]|Ψ〉= 〈
p|xi F (p)|Ψ〉−〈

p|F (p)xi |Ψ
〉

= iℏ
∂

∂pi

(
F (p)Ψ(p)

)−F (p)iℏ
∂

∂pi
Ψ(p)

= iℏ
∂

∂pi
F (p)Ψ(p) =

〈
p|iℏ ∂

∂pi
F (p)|Ψ

〉
. (3.6)
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3.1 Free particle evolution Advanced Quantum mechanics

b.) Solution: We can solve this task using the Heisenberg Picture of time evolution. For a
time dependent operator (which is not explicitly time dependent) we can write

dAH

dt
= 1

iℏ
[AH , H ]. (3.7)

In order to derive the Ehrenfest theorem we need to evaluate the second time derivative of
the position x . For the first derivative we get

d

dt
x = 1

iℏ
[x , H ] = 1

iℏ

[
x ,

p2

2m
+V (x)

]
= 1

iℏ

[
x ,

p2

2m

]
= 1

iℏ
1

2m
[x , p2]

(3.1)= 1

2m
∇⃗∇∇(

p2)= p

m
. (3.8)

Then we can write the second derivative as

d2

dt 2
x = 1

m

d

dt
p = 1

iℏm
[p , H ]

= 1

iℏm
[p ,V (x)]

(3.1)= 1

iℏm
(−iℏ∇⃗∇∇V (x))

⇒ m
d2

dt 2
x =−∇⃗∇∇V (x). (3.9)

The Ehrenfest theorem follows directly by applying the expectation value of a generic state
to both sides of the equation

m
d2

dt 2
〈x〉 =−

〈
∇⃗∇∇V (x)

〉
. (3.10)

c.) Solution: We can write the uncertainty relation in the following way:

〈
(∆xi )2〉

t

〈
(∆xi )2〉

t=0 ≥
1

4
| 〈[xi (t ), xi (0)]〉 |2. (3.11)

We can use (3.8) to find a relation between xi (t ) and xi (0):

xi (t ) = xi (0)+ pi (0)

m
· t . (3.12)

Then we can write the commutator [xi (t ), xi (0)] as

[xi (t ), xi (0)] =
[

xi (0)+ pi (0)

m
t , xi (0)

]
=

[
pi (0)

m
t , xi (0)

]
=−iℏ

t

m
. (3.13)

Now we can substitute (3.13) into (3.11)

〈
(∆xi )2〉

t

〈
(∆xi )2〉

t=0 ≥
1

4

∣∣∣∣−iℏ
t

m

∣∣∣∣2

= ℏ2t 2

4m2
. (3.14)
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3.2 SHO evolution Advanced Quantum mechanics

d.) Solution: The initial Gaussian wave packet can be expressed as

Ψ(x, t0) = 1
4p
πd 2

exp
(
i
p0x

ℏ

)
exp

(
− x2

2d 2

)
. (3.15)

Now we can use the equation given in the lecture, to use the propagator in order to compute
the stateΨ(x, t )

Ψ(x, t ) =
∞̂

−∞
dx ′ K (x, t , x ′,0)Ψ(x ′,0)

= 1
4p
πd 2

√
m

2πiℏt

∞̂

−∞
dx ′ exp

(
i

ℏ
m

2

(x −x ′)2

t

)
exp

(
i
p0x ′

ℏ

)
exp

(
− x ′2

2d 2

)

=
√

m

2π
p
πd iℏt

∞̂

−∞
dx ′ exp

−
(

1

2d 2
− im

2ℏt

)
︸ ︷︷ ︸

=a

x ′2 +
(

ip0

ℏ
− im

tℏ
x

)
︸ ︷︷ ︸

=b

x ′+ im

2ℏt
x2︸ ︷︷ ︸

=c

. (3.16)

Now we can compute this Gaussian integral by using the following relation

∞̂

−∞
dx exp

(−ax2 +bx + c
)= ∞̂

−∞
dx exp

(
−a

(
x − b

2a

)2

+ b2

4a
+ c

)
=

√
π

a
exp

(
b2

4a
+ c

)
.

Ψ(x, t ) =
√

m

2π
p
πd iℏt

√√√√ π

1

2d 2
− im

2ℏt

exp

[(
im

ℏt

)2(p0t

m
−x

)2( 1

d 2
− im

ℏt

)−1

+ im

2ℏt
x2

]

?=
√
p
π

(
iℏt

dm
+d

)−1

exp

[ −(x −p0t/m)2

2d 2(1+ iℏt/md 2)

]
exp

[
ip0

ℏ

(
x − p0t

2m

)]
(3.17)

3.2 SHO evolution

• Sketch the time evolution of the Simple Harmonic Oscillator in the Schrödinger for-
mulation

• Do the same as above, but now in the Heisenberg formulation.

• Hence verify Ehrenfest‘s theorem and the equivalence of the Schrödinger and Heisen-
berg pictures.

• Finally calculate the propagator

K (x2,T, x1,0) =
x2,Tˆ

x1,0

[Dx]exp

(
iS[x(t )]

ℏ

)
(3.18)

for a SHO oscillating with frequency ω.
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Solution: The Hamiltonian of the 1D Harmonic Oscillator can be written as

H = p2

2m
+ m

2
ω2x2 or H = ℏω

(
N + 1

2

)
. (3.19)

We can write a generic state |Ψ〉 as |Ψ〉 = ∑
n cn(0) |n〉 as a superposition of eigenstates |n〉

with eigenvalue n. In the Schrödinger picture the time evoluted state can be written as

|Ψ, t〉 =U |Ψ〉 = exp

(
−i

H t

ℏ

)∑
n

cn(0) |n〉

=∑
n

cn(0)exp

(
−iω

(
n + 1

2

)
t

)
︸ ︷︷ ︸

cn (t )

|n〉 . (3.20)

We can use the Heisenberg picture to analyze the time evolution of the position and momen-
tum operator. We can aquire the equation of motion via relation (3.7)

dx

dt
= 1

iℏ
[x, H ] = 1

iℏ
1

2m
[x, p2] = p

m
. (3.21)

We can then write the second derivative as

d2x

dt 2
= 1

m

dp

dt
= 1

iℏm
[p, H ] = ω2

2iℏ
[p, x2] = ω2

2iℏ

(
−iℏ

∂x2

∂x

)
=−ω2x. (3.22)

The general solution of this differential equation are the sine and cosine function

x(t ) =C1 cos(ωt )+C2 sin(ωt ). (3.23)

We can determine the integration constants by demanding

x(t = 0) = x(0) p(t = 0) = 0, (3.24)

which leads to C1 = x(0) and

p(t ) =−ωm sin(ωt )x(0)+mωC2 cos(ωt )
t=0⇒ C2 = p(0)

mω
, (3.25)

which results in

x(t ) = x(0)cos(ωt )+ p(0)

mω
sin(ωt ). (3.26)

We can now easily verify the Ehrenfest theorem, because we already have the second deriva-
tive in equation (3.22)

m
d2

dt 2
〈x〉 =−

〈
∇⃗∇∇V (x)

〉
m

d2

dt 2
x =−mω2, −∇⃗∇∇V (x) =− ∂

∂x

m

2
ω2x2 =−mω2x, (3.27)

which shows that lhs and rhs are indeed equal.
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3.3 Coherent states (BONUS) Advanced Quantum mechanics

Remark: We can show that both pictures of time evolution are the same by computing the
expectation value of the operators. First we confirm that the operators are the same at t = 0

xH (0) = xS(0) = x0 and pH (0) = pS(0) = p0. (3.28)

The time evoluted operator xH (t ) can be expressed as

xH (t ) = exp

(
i
H t

ℏ

)
x0 exp

(
−i

H t

ℏ

)
. (3.29)

The expectation value is as follows

〈xH (t )〉 =
〈
Ψ|U †xsU |Ψ

〉
= 〈Ψ, t |xs |Ψ, t〉 = 〈xs〉t . (3.30)

3.3 Coherent states (BONUS)

A coherent state of a one-dimensional simple harmonic oscillator is defined to be an eigen-
state of the non-Hermitian (i.e. a ̸= a†) annihilation operator a:

a |λ〉 =λ |λ〉 , (3.31)

where λ, because of the non Hermiticity of a, is a complex number. Coherent states are
specific linear combinations of harmonic oscillator eigenfunctions that produce Gaussian
wave packets that do not spread in time. Moreover, if the uncertainties in position and time
are equal, then the resulting wave packet would be as close a representation of a classical
particle as could be obtained within the bounds of the uncertainty principle.

a) Prove that the following state is normalised:

|λ〉 = exp

(
−|λ|2

2

)
exp

(
λa†

)
|0〉 . (3.32)

b) Show that such a state satisfies the minimum uncertainty relation

∆x∆p = ℏ
2

. (3.33)

c) Write |λ〉 as

|λ〉 =
∞∑

n=0
f (n) |n〉 . (3.34)

Show that the distribution of | f (n)|2 with respect to n if of the Poisson form Pn(µ) =
e−µµn/n!. Find the most probable value of n, and hence of E .

d) Show that a coherent state can also be obtained by applying the translation (finite dis-
placement) operator exp

(−ipl /ℏ
)

(where p is the momentum operator and l is the
displacement distance) to the ground state |0〉.
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a.) Solution: We can show the normalization by multiplying the bra 〈λ| and use the Taylor
series expansion of the exponential function and (a†)n |0〉 = p

n! |n〉 to prove that the coher-
ent state can be expressed as a superposition of the eigenvectors of the harmonic oscillator

〈λ|λ〉 = exp
(−|λ|2)〈0|exp

(
λ∗a

)
exp

(
λa†

)
|0

〉
= exp

(−|λ|2) ∞∑
m=0

∞∑
n=0

〈
0| (λ

∗)m

m!
am λn

n!
(a†)n |0

〉
= exp

(−|λ|2) ∞∑
m=0

∞∑
n=0

λn

n!

(λ∗)m

m!

〈
0|am

p
n!|n

〉
= exp

(−|λ|2) ∞∑
m=0

∞∑
n=0

λn

n!

(λ∗)m

m!

〈
0|

p
n!p

(n −m)!

p
n!|n −m

〉

= exp
(−|λ|2) ∞∑

m=0

∞∑
n=0

λn

��n!

(λ∗)m

m!
��n!p

(n −m)!
〈0|n −m〉︸ ︷︷ ︸

δmn

= exp
(−|λ|2) ∞∑

n=0

(λ∗λ)n

n!
= exp

(−|λ|2)exp
(|λ|2)= 1. (3.35)

b.) Solution: To find an expression for the uncertainty relation we write the position and
momentum operators in terms of a and a†

x =
√

ℏ
2mω

(a +a†) p =−i

√
ℏmω

2
(a −a†). (3.36)

At first we compute some helpful relations〈
λ|a ±a†|λ

〉
= e−|λ|

2
[〈

0|eλ∗a aeλa† |0
〉
±

〈
0|eλ∗a a†eλa† |0

〉]
= e−|λ|

2 ∑
n,m

(λ∗)m

m!

(λ)n

n!

[〈
0|am+1(a†)n |0

〉
±

〈
0|am(a†)n+1|0

〉]
= e−|λ|

2 ∑
n,m

(λ∗)m

m!

(λ)n

n!

[〈
0|am+1

p
n!|n

〉
±

〈
0|am

√
(n +1)!|n +1

〉]
= e−|λ|

2 ∑
n,m

(λ∗)m

m!

(λ)n

n!

[〈
0| n!p

(n −m −1)!
|n − (m +1)

〉
±

〈
0| (n +1)!p

(n +1−m)!
|n +1−m

〉]
= e−|λ|

2
(∑

m

(λ∗)mλm+1

m!
±∑

n

(λ∗)n+1λn

n!

)
=λ±λ∗. (3.37)

Similarly we can show that〈
λ|(a)2|λ〉=λ2

〈
λ|(a†)2|λ

〉
= (λ∗)2 (3.38)〈

λ|a†a|λ
〉
=λ∗λ

〈
λ|aa†|λ

〉
=

〈
λ|1+a†a|λ

〉
= 1+λ∗λ. (3.39)
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Now we can compute 〈∆x〉 and
〈
∆p

〉
via

〈∆A〉 = 〈
A2〉−〈A〉2 . (3.40)

We can use (3.38) and (3.39) for that

〈x〉 = 〈λ|x|λ〉 =
√

ℏ
2mω

(λ+λ∗)

〈
x2〉= ℏ

2mω

〈
λ|a2 + (a†)2 +a†a +aa†|λ

〉
= ℏ

2mω
[λ2 + (λ∗)2 +λ∗λ+ (1+λ∗λ)]. (3.41)

This leads to the following result

〈∆x〉2 = ℏ
2mω

[λ2 + (λ∗)2 +2λ∗λ+1− (λ∗+λ)2] = ℏ
2mω

. (3.42)

For the momentum we get similar results

〈
p

〉= 〈
λ|p|λ〉=−i

√
ℏmω

2
(λ−λ∗)

〈
p2〉=−ℏmω

2

〈
λ|a2 + (a†)2 −a†a −aa†|λ

〉
= ℏ

2mω
[λ2 + (λ∗)2 −λ∗λ− (1+λ∗λ)]. (3.43)

This leads to 〈
∆p

〉2 =−ℏmω

2
[λ2 + (λ∗)2 −λ∗λ− (1+λ∗λ)− (λ∗−λ)2] = ℏmω

2
. (3.44)

From (3.42) and (3.44) we immediately get the correct result

〈∆x〉2 〈
∆p

〉2 = ℏ
2mω

ℏmω

2
⇒〈∆x〉〈∆p

〉= ℏ
2

. (3.45)

c.) Solution: First we compute |λ〉 by performing the Taylor series expansion

|λ〉 = e−|λ|
2/2 exp

(
λa†

)
|0〉

= e−|λ|
2/2

∞∑
n=0

λn

n!
(a†)n |0〉 = e−|λ|

2/2
∞∑

n=0

λn

n!

p
n! |n〉 . (3.46)

This leads to the coefficients f (n)

f (n) = e−|λ|
2/2 λ

n

p
n!

. (3.47)

Now we compute the distribution | f (n)|2 with respect to n

Pn = | f (n)|2 = e−|λ|
2 |λ|2n

n!
= e−µ

µn

n!
, (3.48)

with µ= |λ2|. The most probable value of n can be found by maximising Pn with respect to
n. For that we look for the case when Pn > Pn−1

Pn

Pn−1
= e−µµn

n!

(n −1)!

e−µµn−1
= µ

n

!> 1. (3.49)

This leads to the relation |λ|2 > n. Therefore the most probable value of n is the largest
integer nmax less than |λ|2 with the energy (nmax +1/2)ℏω.
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d.) Solution: We can use equation (3.36) to express the momentum operators with the
ladder operators which leads to

exp

(
−i

p · l

ℏ

)
|0〉 = exp


√

mω

ℏ
l︸ ︷︷ ︸

:=ξ

(a† −a)

 |0〉 . (3.50)

Now we use the Baker-Campbell-Hausdorff formula to rewrite the exponential

exp(A+B) = exp(A)exp(B)exp

(
− [A,B ]

2

)
. (3.51)

This leads to

exp

(
−i

p · l

ℏ

)
|0〉 = eξa†

e−ξa exp
(
ξ

[a†, a]

2︸ ︷︷ ︸
=−1/2

) |0〉
= e−ξ/2eξa†

∞∑
n=0

(−ξ)n

n!
an |0〉︸ ︷︷ ︸
=0,n ̸=0

= e−ξ/2eξa† |0〉 . (3.52)

We can see that because ξ is a real number, that this result is equivalent to the coherent
state (3.32) given in a.) by choosing λ= ξ.
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4 Electromagnetic fields and Gauge transformations

4.1 Gauge Transformation

Consider a particle in an EM field E ,B .

• Write down how the vector potentials A,φ change under a gauge transformation.

• Using the above transformations, show what happens to the Lagrangian L(ẋ, x). Com-
ment therefore, on the effect this has on the classical equations of motion.

• Examine now, what happens to QM expectation values 〈x〉 ,
〈

p
〉

, where p is the canon-
ical momentum. Is

〈
p

〉
gauge independent? What about 〈Π〉 = 〈

p − e
c A

〉
?

• Show that the probability densityρ(t , x) and the probability current density j are gauge
invariant, but the phase factor S in the wave function is not.

Solution: For a general gauge transformation the potentials A and φ change like

A → A +∇⃗∇∇Λ (4.1)

φ→φ− 1

c

∂

∂t
Λ. (4.2)

These transformations leave the electric E and magnetic B field invariant

E =−∇⃗∇∇φ− 1

c

∂

∂t
A =−∇⃗∇∇(φ− 1

c

∂

∂t
Λ)− 1

c

∂

∂t

(
A +∇⃗∇∇Λ

)
B = ∇⃗∇∇××× A = ∇⃗∇∇××× A +∇⃗∇∇×××∇⃗∇∇λ︸ ︷︷ ︸

=0

. (4.3)

The Lagrangian of the electromagnetic field can be written as

L (ẋ , x) = 1

2
mẋ2 + e

c
A · ẋ −eφ

= 1

2
mẋ2 + e

c
(A +∇⃗∇∇Λ) · ẋ −e

(
φ− 1

c

∂

∂t
Λ

)
= 1

2
mẋ2 + e

c
A · ẋ −eφ+ e

c
∇⃗∇∇Λ · ẋ + e

c

∂

∂t
Λ︸ ︷︷ ︸

e

c

dΛ

dt

. (4.4)

We can retrieve the classical equations of motion by applying the Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0. (4.5)

The two parts lead to

∂L

∂xi
=−e

∂

∂xi
φ+ e

c

∂

∂xi
(ẋ · A)+e

c

∂

∂xi

dΛ

dt
d

dt

∂L

∂ẋi
= e

c

dA

dt
+mẍ+e

c

∂

∂xi

dΛ

dt
. (4.6)
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We can see that both red terms that were caused by the gauge will cancel out in the equation
of motion. In the vector representation the equations of motion are

mẍ =−e∇⃗∇∇φ+ e

c
∇⃗∇∇(Aẋ)− e

c

dA

dt

=−e∇⃗∇∇φ+ e

c
∇⃗∇∇(Aẋ)− e

c

∂A

∂t
− e

c
(∇⃗∇∇··· A)ẋ

= e

(
−∇⃗∇∇φ− 1

c

∂A

∂t

)
+ e

c

(
∇⃗∇∇(Aẋ)− (∇⃗∇∇··· A)ẋ

)
= eE + e

c
(ẋ ×B ). (4.7)

We can verify the last step by showing

ẋ ×B = ẋ ×∇⃗∇∇××× A = ∇⃗∇∇(ẋ · A)− (ẋ ·∇∇∇)A. (4.8)

We can conclude, that the equations of motion do not change, because the gauge does not
change the relevant quantities E and B .

Now we want to examine, what happens to the QM expectation values. For that we use the
relation shown in the lecture, that the operators transform in the following way:

x →U †xU , with U = exp
(
i

e

ℏc
Λ(x, t )

)
unitary. (4.9)

We can now compute the expectation value of the transformed x operator by using the com-
mutator [x,U ] = 0, because U is only dependent on space and time

〈α|x|α〉→ 〈α|U †xU |α〉 = 〈α|U †Ux|α〉 = 〈α|x|α〉 . (4.10)

This shows, that x is actually gauge invariant. For the momentum p we use the commutator
relation (3.1) and the gradient of the unitary operator ∇⃗∇∇U = ie/(ℏc)∇⃗∇∇Λwhich results in

〈α|p|α〉→ 〈α|U †pU |α〉 = 〈α|U †(−iℏ∇⃗∇∇U +Up)|α〉 = 〈α|−iℏU †∇⃗∇∇U +p|α〉
= 〈

p
〉− iℏ

ie

ℏc

〈
∇⃗∇∇Λ

〉
= 〈α|p|α〉+ e

c
〈α|⃗∇∇∇Λ|α〉 . (4.11)

We can see that the momentum p is not gauge invariant. However, the kinematical momen-
tumΠ= p − e

c A is gauge invariant:

〈α|Π|α〉→ 〈α|U †
(
p − e

c
(A +∇⃗∇∇Λ)

)
U |α〉 = 〈α|U †pU |α〉− e

c
〈α|U †(A +∇⃗∇∇Λ)U |α〉 . (4.12)

Now we use the property that A(x, t ) andΛ(x, t ) commute with U (x, t ). Then we get

〈α|U †ΠU |α〉 = 〈
p

〉+ e

c�
�

��
〈
∇⃗∇∇Λ

〉
− e

c
(〈A〉+

�
�
��

〈
∇⃗∇∇Λ

〉
)

= 〈α|p − e

c
A|α〉 . (4.13)

Under the gauge transformations the function ψ undergoes some changes too. For that we
consider the time dependent Schrödinger equation

iℏ
∂Ψ

∂t
= 1

2m

(
−iℏ∇∇∇− e

c
A

)2
ψ+eφψ

⇒ iℏ
∂Ψ

∂t
= 1

2m

(
−iℏ∇∇∇− e

c
A − e

c
∇⃗∇∇Λ

)2
ψ+qφψ−q

∂Λ

∂t
ψ. (4.14)
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We can see that for the choice

ψ′ = exp(iλ(x, t ))ψ, λ= e

ℏ
Λ, (4.15)

the Schrödinger equation (4.14) remains unchanged. We can use this finding to test the be-
haviour of the probability density ρ and probability current j . The invariance of ρ can be
found by using ρ =ψψ∗ → exp(iλ(x, t ))ψexp(−iλ(x, t ))ψ∗ =ψψ∗ = ρ.

We can investigate the probability current j by considering the continuity equation for a free
spin-0 particle in an electromagnetic field:

j = 1

2m

[
(ψ∗pψ−ψpψ∗)−2q A|ψ|2]. (4.16)

When the gauge transformation is applied, this leads to

j = 1

2m

[
(e−iλψ∗peiλψ−eiλψpe−iλψ∗)−2q(A +∇⃗∇∇Λ)|ψ|2

]
= 1

2m

[
ψ∗pψ+eiλψ∗ψ

ℏ
i
∇⃗∇∇

(
eiλ

)
−ψpψ∗−e−iλψψ∗ℏ

i
∇⃗∇∇

(
e−iλ

)
−2e(A +∇⃗∇∇Λ)|ψ|2

]
= 1

2m

[
ψ∗pψ+eiλ|ψ|2ℏ

i

ei

ℏ
∇⃗∇∇Λ−ψpψ∗−e−iλ|ψ|2ℏ

i

−ei

ℏ
∇⃗∇∇Λ−2e(A +∇⃗∇∇Λ)|ψ|2

]
= 1

2m

[
ψ∗pψ−ψpψ∗+2|ψ|2e∇⃗∇∇Λ−2e(A +∇⃗∇∇Λ)|ψ|2

]
= 1

2m

[
ψ∗pψ−ψpψ∗−2e A|ψ|2]. (4.17)
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4.2 Landau levels

• Solve the Landau level problem in Landau gauge, find the energies and eigenfunctions.

• Is the wavefunction gauge independent? Is there degeneracy? Discuss.

Solution: We are starting from the expression of L(ẋ, x) from the previous question and
derive the expression of the Hamiltonian H(p, x)

H(p , x) = ∂L

∂ẋ
ẋ −L (ẋ , x). (4.18)

The canonical momentum can be computed as

p = ∂L

∂ẋ
= mẋ + e

c
A, (4.19)

which leads to the Hamiltonian

H(p , x) = mẋ2 + e

c
Aẋ − m

2
ẋ2 − e

c
Aẋ +eφ

= m

2
ẋ2 +eφ

= 1

2m
(p − e

c
A)2 +eφ. (4.20)

Now we show that H(p , x) respond to the gauge transformation by

H ′(p , x) = H(p , x)− 1

c

∂Λ

∂t
, (4.21)

where Λ=Λ(q, t ) is the gauge transformation function. For that we use (4.4) and computed
the new canonical momentum

p = ∂L

∂ẋ
= mẋ + e

c
A + e

c
∇⃗∇∇Λ, (4.22)

which leads to the Hamiltonian

H ′(p , x) = pẋ −L (ẋ , x)

= mẋ2 +
�
�
�e

c
Aẋ +

�
�
��e

c
∇⃗∇∇Λẋ −

(
1

2
mẋ2 +

�
�

��e

c
A · ẋ −eφ+

����e

c
∇⃗∇∇Λ · ẋ + e

c

∂

∂t
Λ

)
= 1

2
mẋ2 +eφ− e

c

∂Λ

∂t
= H(p , x)− e

c

∂Λ

∂t
. (4.23)

For a purely magnetic field the equations of motion will be

mẍ = e ẋ ×B. (4.24)
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We can see that the acceleration is perpendicular to the velocity which leads to a circular
motion. We can work out the commutation relation of the kinematical momentumΠ as

[Πa ,Πb] = [pa − e

c
Aa , pb −

e

c
Ab]

=−e

c
([pa , Ab]− [Aa , pb]) =−e

c
(−iℏ∂a Ab + iℏ∂b Aa)

= iℏ
e

c
εabc Bc . (4.25)

Now we specialise to a geometry B = B z. Therefore the Hamiltonian will be H = 1
2m (Π2

x+Π2
y ).

Now we try to express the Hamiltonian in terms of

Π± =
√

c

2eℏB
(Πx ± iΠy ). (4.26)

Analagously to the SHO we find the Hamiltonian by identifying a† = H−. Hence

H = ℏ
(

eB

mc

)(
Π−Π++ 1

2

)
. (4.27)

As a further specialisation we choose the Landauian Gauge with A = xBe y . The Hamiltonian
can the be written as

H = 1

2
(Π2

x +Π2
y ) = 1

2m

[
p2

x +
(
py − q

c
xB

)2
]

. (4.28)

We see that the Hamiltonian is not dependent on y . Therefore y is a cyclic coordinate. This
motivates a separation like

ψ(x, y) = eik y f (x). (4.29)

So now if we want to solve for the eigenspectrum we use the time independent Schrödinger
equation

Hψ(x, y) = Eψ

1

2m

[
p2

x +
(
ℏk − e

c
xB

)2
]

f (x) = E f (x)[
p2

x

2m
+ m

2

(
eB

mc

)2(
x − cℏk

eB

)2]
f (x) = E f (x). (4.30)

We now see that the last expression is a SHO with a frequency given by ωB = eB/mc and a
centre at x = cℏk

eB . The eigenvalues are well known and given by

En = ℏωB

(
n + 1

2

)
. (4.31)

The eigenspectrum on the other hand looks like

ψkn ∼ eik y Hn(x −kl 2
B )exp

[
1

2

(
x −kl 2

B

lB

)2]
, with lB ≡

√
ℏ

eB
. (4.32)

We see that the eigenspectrum contains both k and n, whereas the eigenvalues only depend
on n. Hence there is an infinite degeneracy at a particular energy level.
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4.3 Landau levels in a finite box

Let us consider an experiment in which electrons on a rectangular plane with surface S =
LxLy are immersed in a magnetic field directed along the z axis B = B z. In this case transla-
tional invariance is broken and the Landau levels are resolved into a cluster of levels. How-
ever, for sufficiently intense B the cluster can be approximated by a degenerate level with a
certain multiplicity N .

a) Apply a semi-classical argument to show that N ≈ S
h/eB .

b) Give an interpretation to the quantity h/eB .

c) Looking at the results above, why is a large B required to see this effect?

a.) Solution: Since the energy levels only depend on the quantum number n and not
on k, degeneracy is given by the number of states with different k for a fixed n inside the
finite box. Thus, to calculate the total number of levels in S, wen need to restrictions on
the wavenumbers kx ,ky in both directions. The choice of the Landauian gauge A = xBe y is
invariant in the y-direction but not in the x-direction. This implies that the corresponding
wavefunction has the same properties of invariance.

Given the symmetry properties of the wave function (4.32) we can find ky exactly as for a
particle in a box. We find that ky = k = 2πN /Ly with an integer N . Thus, N = kLy /2π. We
see in equation (4.32), that the wavefunction is exponentially localised around the central
position x = k ℏ

eB . Now we can use the restriction 0 ≤ x ≤ Lx to find 0 ≤ k ≤ Lx/l 2
B . With that

we can calculate N

N = k
Ly

2π
= LxLy

2πl 2
B

= S

h/eB
. (4.33)

b.) Solution: The quantity h/eB has units of area

[h]

[e][B ]
= Js

C Ns
Cm

= m2. (4.34)

We can call the square root of this quantity the magnetic length. Actually the magnetic length
is defined as lB with ℏ instead of h. However, this quantity characterises the length scales
which govern any quantum pheonomena in a magnetic field. For an electro in a magnetic
field of 1 T, we get lB ≈ 2,5 ·10−8 m.

c.) Solution We found that the degeneracy N is proportional to B . Thus, for bigger fields
the degeneracy is higher and more electrons can fit into each finite Landau level.

29



4.4 Interference Experiment Advanced Quantum mechanics

4.4 Interference Experiment

Consider the neutron interferometer below, where a nearly monoenergetic beam of thermal
neutrons with momentum ρ = h/λ is split into two parts-path A and B (see Figure). Path A
always goes through a magnetic field-free region, in contrast path B enters a small region of
length l where a magnetic field B is present.

• Write the time evolution of the initial state |α〉 from the source to the interference point
via the path A. Use the time evolution operator U (t ).

• Repeat the computation for the particle moving along path B . Observe that the neu-
trons moving along path B present a phase shift with respect to those going through
A. What is the expression of this phase difference and how is it related to the time T
spent by the particles in the B ̸= 0 region?

• Using the properties of the Pauli matrices, prove that

exp(±iktσz) = cos(kt )± isin(kt )σz =
(
e±ikt 0

0 e∓ikt

)
(4.35)

and apply it to the phase shift computed above.

• The finale state ket β at the interference region is given by the combination of kets
which wen through the two different paths. Calculate the norm of this state and de-
duce the maxima in the counting rates from it.

• Prove that the increment in the magnetic field that separates two successive maxima
in the counting rates is given by

∆B = 4πℏc

egnλl
. (4.36)
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4.5 Classical particle in a magnetic field (Bonus)

Consider a particle of mass m and charge e moving in a constant magnetic field B = B z.
Assume that the vector potential has the form A = B/2(−y, x,0).

a) Prove that P1 = px − eB
2c y,P2 = py + eB

2c x and P3 = pz are constants of motion.

b) Calculate the infinitesimal generators of translation Ga (x , p) = a · (p − e
c x ×B ) for the

translation (x , p) → (x+a, p+ e
c ∇⃗∇∇Λ(x , a)) in the gauge A(x+a)−A(x) = ∇⃗∇∇Λ(x , a) where

both correspond to the same B .
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5 Angular momentum

5.1 Rotation matrices

Consider the usual rotation matrices inR3, namely R(x̂,α), R(ŷ ,α), R(ẑ,α), where x̂, ŷ , ẑ are
the rotational axes and α is the angle of rotation. Prove the equation

R(x̂,α)R(ŷ ,α)−R(ŷ ,α)R(x̂,α) =R(ẑ,α2)−1 (5.1)

in the limit in which α is small. 1 is the identity matrix.

Solution: The Rotation matrices R(x̂,α) ≡R x̂ in R3 are given by

R x̂ =
1 0 0

0 cosα −sinα
0 sinα cosα

, R ŷ =
 cosα 0 sinα

0 1 0
−sinα 0 cosα

, R ẑ =
cosα −sinα 0

sinα cosα 0
0 0 1

.

For small α we can approxiamte the sine and cosine by their first two orders of the Taylor
series expansion, which leads to

R x̂ =

1 0 0

0 1− α2

2 −α
0 α 1− α2

2

, R ŷ =

1− α2

2 0 α

0 1 0

−α 0 1− α2

2

, R ẑ =

1− α2

2 −α 0

α 1− α2

2 0
0 0 1

.

Now we can calculate R(x̂,α)R(ŷ ,α) and R(ŷ ,α)R(x̂,α) by neglecting all terms of α with
higher order than two

R x̂R ŷ =

1− α2

2 0 α

α2 1− α2

2 −α
−α α 1−α2

, R ŷR x̂ =

1− α2

2 α2 α

0 1− α2

2 −α
−α α 1−α2

. (5.2)

Now if we subtract both results in (5.2) we get

Rx̂Rŷ −RŷRx̂ =
 0 −α2 0
α2 0 0
0 0 0

=
 1 −α2 0
α2 1 0
0 0 1

−1. (5.3)

We can now compute R ẑ(α2) again by ignoring higher order terms

R ẑ(α2) =

1− α4

2 −α2 0

α2 1− α4

2 0
0 0 1

=
 1 −α2 0
α2 1 0
0 0 1

. (5.4)

We can compare that result to verify equation (5.1).
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5.2 Pauli matrices

Pauli matrices σx ,σy ,σz are very important in Quantum Mechanics, containing the alge-
braic properties of spin operators Sx,y,z = ℏ/2σx,y,z . After writing down the expressions of
Pauli matrices in the basis which diagonalizes σz , prove the following properties:

i.) σ2
k =1

ii.)
{
σi ,σ j

}= 2δi j

iii.) [σi ,σ j ] = 2iεi j kσk

iv.) σ†
k =σk

v.) detσk =−1

vi.) Trσk = 0

Solution: The Pauli matrices in the basis which diagonalizes σz are given as

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.5)

i.) We can verify this property by noticing that for all matrices all column vectors are or-
thorgonal zu each other. Therefore we can conclude that σi must be unitary. Because
σi is also hermitian (see iv), we get immediately 1=σ†

iσi =σ2
i .

ii.) For i = j we already showed that σ2
i = 1. Then {σi ,σi } = 21. So now lets compute{

σi ,σ j
}

for i ̸= j :

σxσy =
(

i 0
0 −i

)
= iσz , σyσx =

(−i 0
0 i

)
=−iσz (5.6)

σyσz =
(
0 i
i 0

)
= iσx , σzσy =

( −i
−i 0

)
=−iσx (5.7)

σzσx =
(

0 1
−1 0

)
= iσy , σxσz =

( −1
1 0

)
=−iσy (5.8)

We can see that σiσ j =−σ jσi which leads to
{
σi ,σ j

}= 0.

iii.) We can see from last point already, that σiσ j = iεi j kσk . Because σiσ j =−σ jσi we see
that [σi ,σ j ] = 2σiσ j = 2iεi j kσk .

iv.) By noting thatσx andσz are real and symmetric andσy is imaginary and antisymmet-
ric we can immediately verify the hermitian property.

v.) We can easily compute the determinant of a matrix

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc, which can be

used to verify detσi =−1 for all three matrices.

vi.) Since σx ,σy do not have entries on the diagonal, the relation is trivial. For σz we also
see that Trσz = 1−1 = 0.
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5.3 Clebsch-Gordan coefficients

Consider a system composed of two subsystems with angular momenta j1 = 1 and j2 = 1.
The z-components of these angular momenta are denoted by m1 and m2. The states of the
total system are characterized by the total angular momentum j and corresponding mag-
netic quantum number m. Compute the Clebsch-Gordan coefficients for the quantum num-
bers given in the following tables.

m = 0 j = 2 j = 1 j = 0

m1 = 1, m2 =−1
m1 = 0, m2 = 0
m1 =−1, m2 = 1

m = 1 j = 2 j = 1

m1 = 1, m2 = 0
m1 = 0, m2 = 1

Solution: We can calculate all of the Clebsch-Gordan coefficients by using the recursion
relation and the orthonormality condition. The recursion relation is defined as follows√

( j ∓m)( j ±m +1)
〈

m1m2
∣∣ j m ±1

〉=√
( j1 ∓m1 +1)( j1 ±m1)

〈
m1 ∓1,m2

∣∣ j m
〉

+
√

( j2 ∓m2 +1)( j2 ±m2)
〈

m1,m2 ∓1
∣∣ j m

〉
. (5.9)

Remember that the recursion relation only acts for constant j . In order to find relations
between different j we need to use the orthonormality relation. We call J+ the operation
taking the upper signs of equation (5.9) and J− the operation with the lower signs. We can
find the first Clebsch-Gordan coefficient in the highest state with maximum j ,m j with〈

m1 = 1,m2 = 1
∣∣ j = 2,m = 2

〉= 〈11|22〉 = 1. (5.10)

We can construct the first lower state by applying J− to the Clebsch-Gordan coefficient 〈10|21〉
which leads to √

( j +m)( j −m +1)〈10|21〉 =
√

( j1 +m1 +1)( j1 −m1)〈20|22〉︸ ︷︷ ︸
=0

+
√

( j2 +m2 +1)( j2 −m2)〈11|22〉
2〈10|21〉 =p

2〈11|22〉︸ ︷︷ ︸
=1

⇒〈10|21〉 = 1p
2

. (5.11)

We can further apply J− to the unknown coefficient 〈1 −1|20〉 which leads to√
( j +m)( j −m +1)〈1 −1|20〉 =

√
( j1 +m1 +1)( j1 −m1)〈2 −1|21〉︸ ︷︷ ︸

=0

+
√

( j2 +m2 +1)( j2 −m2)〈10|21〉
p

6〈10|21〉 =p
2〈10|21〉︸ ︷︷ ︸

=1/
p

2

⇒〈1 −1|20〉 = 1p
6

. (5.12)
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m2

m1

J−

J−
J+

J−

J+

If we now apply J+ to the 〈10|21〉 coefficient this will yield the 〈00|20〉 state√
( j −m)( j +m +1)〈10|20〉 =

√
( j1 −m1 +1)( j1 +m1)〈00|20〉

+
√

( j2 −m2 +1)( j2 +m2)〈1 −1|20〉
p

6〈10|21〉︸ ︷︷ ︸
1/
p

2

=p
2〈00|20〉+p

2〈1 −1|20〉︸ ︷︷ ︸
1/
p

6

⇒〈00|20〉 =
√

2

3
. (5.13)

The next coefficient can be constructed by applying J− to 〈01|21〉√
( j +m)( j −m +1)〈01|21〉 =

√
( j1 +m1 +1)( j1 −m1)〈11|22〉

+
√

( j2 +m2 +1)( j2 −m2)〈02|22〉︸ ︷︷ ︸
0

2〈01|21〉 =p
2〈11|22〉︸ ︷︷ ︸

1

⇒〈01|21〉 = 1p
2

. (5.14)

Again the second term vanishes because m j > j is not possible. The last coefficient for j = 2
can be constructed by applying J+ to the same coefficient as before√

( j −m)( j +m +1)〈01|21〉 =
√

( j1 −m1 +1)( j1 +m1)〈−11|20〉
+

√
( j2 −m2 +1)( j2 +m2)〈00|20〉

p
6〈01|21〉︸ ︷︷ ︸

1/
p

2

=p
2〈−11|20〉+p

2〈00|20〉︸ ︷︷ ︸p
2/
p

3

⇒〈−11|20〉 = 1p
6

. (5.15)

Our table now looks like

m = 0 j = 2 j = 1 j = 0

m1 = 1, m2 =−1 1/
p

6
m1 = 0, m2 = 0

p
2/
p

3
m1 =−1, m2 = 1 1/

p
6

m = 1 j = 2 j = 1

m1 = 1, m2 = 0 1/
p

2
m1 = 0, m2 = 1 1/

p
2

Now we can use the orthonormality relation∑
j

〈
m1m2

∣∣ j m
〉〈

m1m2
∣∣ j m

〉= 1 (5.16)
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to find an expression for a Clebsch-Gordan coefficient with j = 1

〈10|21〉2︸ ︷︷ ︸
=1/2

+〈10|11〉2 = 1 ⇒〈10|11〉 = 1p
2

. (5.17)

We will choose the plus sign solution, because we use the Condon-Shortley phase convention
which states that 〈

j1, j2,m1 = j1,m2
∣∣ j m

〉 ∈R,> 0. (5.18)

Due to orthogonality of the two columns of the right table we can immediately deduce the
coefficient for 〈01|11〉 =−1/

p
2. Alternatively we can obtain this result by applying J+ to the

zero coefficient 〈11|12〉.
m2

m1

J+

J−

J−

J−

J−

We can obtain the 〈1 −1|10〉 coefficient by applying J−√
( j +m)( j −m +1)〈1 −1|10〉 =

√
( j1 +m1 +1)( j1 −m1)〈2 −1|11〉︸ ︷︷ ︸

=0

+
√

( j2 +m2 +1)( j2 −m2)〈10|11〉
p

2〈1 −1|10〉 =p
2〈10|11〉︸ ︷︷ ︸

=1/
p

2

⇒〈1 −1|10〉 = 1p
2

. (5.19)

Now we can apply J− to 〈−11|10〉√
( j +m)( j −m +1)〈−11|10〉 =

√
( j1 +m1 +1)( j1 −m1)〈01|11〉

+
√

( j2 +m2 +1)( j2 −m2)〈−12|11〉︸ ︷︷ ︸
0

p
2〈−11|10〉 =p

2〈01|11〉︸ ︷︷ ︸
−1/

p
2

⇒〈−11|10〉 =− 1p
2

. (5.20)

The last coefficient can be constructed by applying J− to 〈00|10〉√
( j +m)( j −m +1)〈00|10〉 =

√
( j1 +m1 +1)( j1 −m1)〈10|11〉

+
√

( j2 +m2 +1)( j2 −m2)〈01|11〉p
2〈00|10〉 =p

2〈10|11〉︸ ︷︷ ︸
1/
p

2

+p2〈01|11〉︸ ︷︷ ︸
−1/

p
2

= 0. (5.21)
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We can now easily fill in the last column of the first table by again applying the orthogonality
relation for the rows. Because of Condon-Shortley phase convention we know that 〈1 −1|00〉
is positive

〈1−1|20〉2︸ ︷︷ ︸
1/6

+〈1 −1|10〉2︸ ︷︷ ︸
1/2

+〈1 −1|10〉2 = 1 ⇒〈1 −1|10〉 = 1p
3

. (5.22)

m = 0 j = 2 j = 1 j = 0

m1 = 1,m2 =−1 1/
p

6 1/
p

2 1/
p

3
m1 = 0,m2 = 0

p
2/
p

3 0 −1/
p

3
m1 =−1,m2 = 1 1/

p
6 −1/

p
2 1/

p
3

m = 1 j = 2 j = 1

m1 = 1,m2 = 0 1/
p

2 1/
p

2
m1 = 0,m2 = 1 1/

p
2 −1/

p
2
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5.4 Rotations in Quantum mechanics

Recall that a finite rotation operator in Quantum Mechanics is given by

T [θ] = exp

(
−i

J ·θ
ℏ

)
(5.23)

where J is the generalised generator of rotation. Show that if a classical observable S(t , x)
transforms like a scalar under rotation, the quantum operator must satisfy

[S, Ji ] = 0. (5.24)

Hence show also that to be a vector V (t , x) under rotation, the condition to be satisfied is

[Va , Jb] = iεabcVc . (5.25)

Deduce, therefore the transformation of 〈V |V 〉 under a rotation. Hint: Think of transforma-
tions in the Heisenberg formulation. You can use the Baker-Campbell-Hausdorff formula for
the second part.

Solution: Working in the Heisenberg formulation, we see that the action of rotation upon
an operator O is given by

OR (θ) = T †OT = exp

(
i

J ·θ
ℏ

)
O exp

(
−i

J ·θ
ℏ

)
. (5.26)

For a vector under rotation let us first see what happens under an infinitesimal rotation δθ.
Then

Va(R[δθ]) =
(
1+ i

J ·θ
ℏ

)
Va

(
1− i

J ·θ
ℏ

)
=

(
1+ i

Jk nkδθ

ℏ

)
Va

(
1− i

Jk nkδθ

ℏ

)
=Va − i

ℏ
[Va , Jk ]nkδθ. (5.27)

So if now the commutation relation [Va , Jk ] = iℏεakl Vl is satisfied2, then

Va(R[δθ]) =Va +εakl nkδθVl =Va + (δθ×V )a (5.28)

which exactly corresponds to the small rotation. The factor of ℏ is just to keep the formula
dimensionally consistent.

Now lets attempt to prove the relation for finite rotations. Without loss of generality we can
set the rotation axis to be the z-axis. Let us look at the x component of a vector V

Vx(R[θ]) =
(
1+ i

J ·θ
ℏ

)
Va

(
1− i

J ·θ
ℏ

)
BCH formula

=Vx + iθ[Jz ,Vx]+ (iθ)2

2!
[Jz , [Jz ,Vx]]+ (iθ)3

3!
[Jz , [Jz , [Jz ,Vx]]]+ . . .

=Vx

(
1− θ2

2!
+ θ4

4!
+ . . .

)
−Vy

(
(θ− θ3

3!
+ θ5

5!
+ . . .)

)
〈Vx(R[θ])〉 = 〈Vx〉cosθ−〈

Vy
〉

cosθ (5.29)

2In the task the commutation relation was given with ℏ≡ 1.

38



5.5 Coupling of three angular momenta (BONUS) Advanced Quantum mechanics

In deriving the above we have made repeated use of the commutation relation. Thus we see
that the rhs is exactly the rotation operator Rz(θ) applied to 〈Vx〉. In an analogous way the
transformations for

〈
Vy

〉
can also be found〈

Vy (R[θ])
〉= 〈Vx〉sinθ+〈

Vy
〉

cosθ (5.30)

also as [Jz ,Vz] = 0, so 〈Vz(R[θ])〉 = 〈Vz〉. The total rotation matrix R can now be written as

R =
cosθ −sinθ 0

sinθ cosθ 0
0 0 1

= Rz . (5.31)

This can now be generalised to arbitrary axes by use of Euler angles.

5.5 Coupling of three angular momenta (BONUS)

A system consists of three spin-1/2 particles. Construct an orthonormal basis |S,Sz〉 of eigen-
vectors of S2 and Sz , where

S = S1 +S2 +S3 (5.32)

is the total spin of the system.
Hint: Write down the |3/2,3/2〉 state and build the other s = 3/2 states by repeatedly applying
the S− = S(1)− + S(2)− + S(3)− operator. To obtain the s = 1/2 states consider one of the three
possible pairs of particles in the s = 0 singlet state and couple it to the third particle. Are the
states you obtain all linearly independent?

Solution: At first we write down the
∣∣3

2 , 3
2

〉
which can only be achieved if all three spins are

pointing upwards. We can write this as∣∣∣∣3

2
,

3

2

〉
= |↑↑↑〉 . (5.33)

We can now apply the ladder operator S− to this state, which can be expressed in the ↑↓ basis
as

S− = S1−+S2−+S3−, (5.34)

where Si− only acts on the state of spin i . First we apply the ladder operator to the new
basis

S−
∣∣∣∣3

2
,

3

2

〉
= ℏ

√
(s +m)(s −m +1)

∣∣∣∣3

2
,

1

2

〉
= ℏ

√(
3

2
+ 3

2

)(
3

2
− 3

2
+1

)∣∣∣∣3

2
,

1

2

〉
= ℏ

p
3

∣∣∣∣3

2
,

1

2

〉
. (5.35)
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We can also apply the ladder operator to the old basis

S1− |↑↑↑〉 = ℏ
√

(s1 +m1)(s1 −m1 +1) |↓↑↑〉

= ℏ

√(
1

2
+ 1

2

)(
1

2
− 1

2
+1

)
|↓↑↑〉 = ℏ |↓↑↑〉 . (5.36)

We can apply this for all three ladder operators separately which yields

S− |↑↑↑〉 = ℏ(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉). (5.37)

We can now compare (5.35) and (5.37) resulting in∣∣∣∣3

2
,

1

2

〉
= 1p

3
(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉). (5.38)

We find the same results for the symmtetric case of three down spins∣∣∣∣3

2
,

3

2

〉
= |↓↓↓〉 . (5.39)

Here we can instead apply the climbing ladder operator S+ which leads us to a similar re-
sult ∣∣∣∣3

2
,−1

2

〉
= 1p

3
(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉), (5.40)

which can be obtained by just switching the signs of all spins. Alternatively we could apply
the ladder operator again to (5.38).

In order to obtain the state for s = 1/2 we can use a system of two spin 1/2 particles with
total spin S = 0 and take the tensor product with a third spin particle. The singlet state of the
2-spin system was derived in the lecture as

|00〉 = 1p
2

(|↑↓〉− |↓↑〉). (5.41)

We can construct the S = 1/2 state by applying the tensor product of (??) with |↑〉

|00〉⊗ |↑〉︸ ︷︷ ︸
|1/2,1/2〉

= 1p
2

(|↑↓〉− |↓↑〉)⊗|↑〉
∣∣∣∣1

2
,

1

2

〉
= 1p

2
(|↑↓↑〉− |↓↑↑〉). (5.42)

In order to obtain the |1/2,−1/2〉 state we can take the tensor product with |↓〉

|00〉⊗ |↓〉︸ ︷︷ ︸
|1/2,−1/2〉

= 1p
2

(|↑↓〉− |↓↑〉)⊗|↓〉
∣∣∣∣1

2
,−1

2

〉
= 1p

2
(|↑↓↓〉− |↓↑↓〉). (5.43)
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6 Time independent perturbation theory

6.1 Perturbation of Harmonic Oscillator

Consider the quartic Oscillator

H(x, p) = p2

2m
+ 1

2
mω2x2 + 1

2
µω4x4. (6.1)

Treating the last term as a perturbation to the SHO problem, find the resulting new eigenval-
ues for an arbitrary energy state |Ek〉 up to the 2nd order. What would be the new eigenvalues
for the ground state |E0〉 at the 3rd order?
Hint: Write down the Hamiltonian as H0 +λHp , where H0 and Hp mean the unperturbed
and the perturbing Hamiltonians. Similarly expand both En and Ψn in powers of λ (order
of expansion). Collect the terms at a given order to derive the nature of the perturbation
equation at that order.

Solution: We can write the Hamiltonian as

H(x, p) = H0 + λ

2
µω4x4. (6.2)

We can write the uperturbed solution as

H0
∣∣E (0)

n

〉= E (0)
n

∣∣E (0)
n

〉
E (0)

n = ℏω
(
n + 1

2

)
. (6.3)

We can additionally introduce the effects of the ladder operators on the eigenstates

a†
∣∣E (0)

n

〉=p
n +1

∣∣∣E (0)
n+1

〉
a

∣∣E (0)
n

〉= n
∣∣∣E (0)

n−1

〉
. (6.4)

We can now express the perturbation with the ladder operator

a =
√
µω

2ℏ

(
x + i

P

µω

)
→ x =

√
ℏ

2µω
(a +a†). (6.5)

The perturbation can then be written as

Hp = 1

8

ℏ2ω2

µ
(a +a†)4. (6.6)

In the lecture we derived a formula for the perturbed energies δk and perturbed states ηk

δk = 〈
E0|Hp |ηk−1

〉= 1

8

ℏ2ω2

µ︸ ︷︷ ︸
:=K

〈
E0|(a +a†)4|ηk−1

〉
. (6.7)
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We denote the unperturbed eigenstates
∣∣∣E (0)

n

〉
as |n〉. We first calculate

Hp
∣∣η0

〉= K (a +a†)4 |0〉 = K (a +a†)3 |1〉
= K (a +a†)2(|0〉+p

2 |2〉)
= K (a +a†)(|1〉+2 |1〉+p

6 |3〉)
= K (3 |0〉+6

p
2 |2〉+2

p
6 |4〉). (6.8)

This immediately leads to

δ1 =
〈

E0|Hp |E0
〉= 〈0|K (3 |0〉+3

p
2 |2〉+2

p
6 |4〉) = 3K . (6.9)

The general formula of the corrected state is

∣∣ηk
〉= R0

k−1∑
j
δ j

∣∣ηk−1
〉−R0Hp

∣∣ηk−1
〉

, (6.10)

where R0 is the resolvent

R0 |n〉 =
{

1
n |n〉 n > 0

0 otherwise.
(6.11)

We can now calculate the state correction of the first order∣∣η1
〉=−R0Hp

∣∣η0
〉=−R0K (3 |0〉+6

p
2 |2〉+2

p
6 |4〉)

=−K

(
3
p

2 |2〉+
p

6

4
|4〉

)
. (6.12)

In order to calculate the second corrected energy state
∣∣η2

〉
we first calculate

(a +a†)4 |2〉 = (a +a†)3(
p

2 |1〉+p
3 |3〉)

= (a +a†)2(
p

2 |0〉+5 |2〉+2
p

3 |4〉)
= (a +a†)(6

p
2 |1〉+9

p
3 |3〉+2

p
3
p

5 |5〉)
= 6

p
2 |0〉+39 |2〉+28

p
3 |4〉+6

p
2
p

5 |6〉 . (6.13)

Analogously we can calculate

(a +a†)4 |4〉 = (a +a†)3(2 |3〉+p
5 |5〉)

= (a +a†)2(2
p

2 |2〉+9 |4〉+p
5
p

6 |6〉)
= (a +a†)(2

p
6 |1〉+24 |3〉+15

p
5 |5〉+p

5
p

6
p

7 |7〉)
= 2

p
6 |0〉+28

p
3 |2〉+123 |4〉+22

p
5
p

6 |6〉+p
5
p

6
p

7
p

8 |8〉 . (6.14)

First we compute the energy correction

δ2 =−K 2
(
3
p

2
〈

0|(a +a†)4|2
〉

︸ ︷︷ ︸
6
p

2

+
p

6

2

〈
0|(a +a†)4|4

〉
︸ ︷︷ ︸

2
p

6

)

=−K 2(18 ·2+6) =−42K 2 =−21

32

ℏ4ω4

µ2
. (6.15)
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6.2 Spherical tensors

Consider a spinless particle bound to a fixed center by a central force potential.

a) Using only the Wigner-Eckart theorem, relate (i. e. consider the ratio between) the ma-
trix elements〈

n′, l ′,m′∣∣∓ 1p
2

(x ± iy) |n, l ,m〉 and
〈

n′, l ′,m′|z|n, l ,m
〉

(6.16)

stating under what conditions the matrix elements are nonvanishing.
Hint: You can recognize the matrix elements above as the elements of a spherical ten-
sor of rank 1.

b) Do the same problem again using wave functionsψ(x) =Rnl Y m
l (ϑ,ϕ), i. e. ψ is factor-

ized in a radial and angular part.

a.) Solution: The Wigner-Eckart theorem for a generic tensor operator of rank k R(k)
q

reads 〈
n′, l ′,m′|R(k)

q |n, l ,m
〉
=

〈
lk;mq |lk; l ′m′〉〈

n′l ′||R(1)||nl
〉

p
2l +1

. (6.17)

The double bar matrix element is independent of m and m′. As was given in the hint, the
matrix elements form a spherical tensor of rank k = 1 which can be written as

R(1)
± =∓ 1p

2
(x ± iy) and R(1)

0 = z. (6.18)

From the requirement that the Clebsch-Gordan coefficient is nonvanishing we obtain the m
selection rule m′ = m + q and also the triangular relation |l −k| ≤ l ′ ≤ |l +k|. In the special
case of rank 1 tensors this translates to

|l −1| ≤ l ′ ≤ |l +1| ⇒ l ′ = |l ±1|,0. (6.19)

We can further restrict this selection rule based on a parity argument. For a central potential
|nlm〉 is an eigenvector of the parity operator Up . We obtain

Up |nlm〉 = (−1)l |nlm〉 U−1
p R(1) =−R(1). (6.20)

Hence we can write the left hand side of the Wigner-Eckart theorem as

−〈
n′, l ′,m′|R(1)|n, l ,m

〉= (−1)l (−1)l ′ 〈n′, l ′,m′|R(1)|n, l ,m
〉

. (6.21)

This implies that l + l ′ has to be odd, therefore l ′ ̸= l . We can now consider the ratio〈
n′, l ′,m′∣∣R(1)

± |n, l ,m〉
〈n′, l ′,m′|R(1)

0 |n, l ,m〉
=

〈
l ,1,m1,±1|l ,1, l ′,m′

1

〉〈
l ,1,m2,0|l ,1, l ′,m′

2

〉 〈
n′, l ′||R(1)||n, l

〉p
2l +1〈

n′, l ′||R(1)||n, l
〉p

2l +1

=
〈

l ,1,m1,±1|l ,1, l ′,m′
1

〉〈
l ,1,m2,0|l ,1, l ′,m′

2

〉 , (6.22)

where q =±1,0 and l ′,m′ satisfy the selection rules found above.
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b.) Solution: Now we use the wave functionΨ(x) =Rnl (r )Y m
l (θ,φ). We can evaluate the

matrix element using q =±1,0〈
n′, l ′,m′|R(1)

q |n, l ,m
〉
=
ˆ

R∗
n′l ′(r )Y m′∗

l ′ (ϑ,ϕ)[R(1)
q ]Rnl (r )Y m

l (ϑ,ϕ)d3x

=
√

4π

3

∞̂

0

r 2R∗
n′l ′r Rnl

ˆ
Y m′∗

l ′ Y q
1 Y m

l dΩ . (6.23)

Here we use the fact that R(1)
q can be written in terms of spherical harmonics

Y 0
1 =

√
3

4π
cosϑ=

√
3

4π

z

r
⇒ z = r Y 0

1

√
4π

3
(6.24)

Y ±1
1 =∓x ± iy

r
p

2

√
3

4π
⇒ R(1)

± =∓x ± iyp
2

= r Y ±1
1

√
4π

3
. (6.25)

For whatever value of q , R(1)
q contains the prefactor

√
4π
3 , an r and the spherical harmonic

Y q
1 .

We can now use an identity for the integral of three generic spherical harmonics3

ˆ
dΩY m∗

l Y m1
l1

Y m2
l2

=
√

(2l1 +1)(2l2 +1)

4π(2l +1)
〈l1l2;00|l1l2; l 0〉〈l1l2;m1m2|l1l2; l m〉 . (6.26)

We can insert this now into (6.23) to obtain

〈
n′, l ′,m′|R(1)

q |n, l ,m
〉
=

√
4π

3

∞̂

0

r 2R∗
n′l ′r Rnl

√
(2l +1)3

4π(2l ′+1)

〈
l11;00|l1; l ′0

〉〈
l1q ;mq |l1; l ′m′〉

=
∞̂

0

r 2R∗
n′l ′r Rnl

√
(2l +1)

(2l ′+1)

〈
l11;00|l1; l ′0

〉〈
l1q ;mq |l1; l ′m′〉 . (6.27)

This value is only nonzero if l ̸= l ′. The selection rules come directly from the orthogonality
of the spherical harmonics. We find the same result as in a.) when taking the ratio between
the matrix elements with l ′ = |l ±1| and m′

1 = m1 ±1,m′
2 = m2.

3see Sakurai, 2nd edition, p.217
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6.3 Time independent perturbations and degeneracy

p-orbital electron characterized by |n, l = 1,m =±1,0〉 (ignore spin) is subjected a poten-
tial

V =λ(x2 − y2) λ= const. (6.28)

a) Obtain the correct zeroth-order energy eigenstates that diagonalize the perturbation.
You need not evaluate the energy shifts in detail, but show that the original threefold
degeneracy is now completely removed.

b) Because V is invariant under time reversal and because there is no longer any degen-
eracy, we expect each of the energy eigenstates obtained in a) to go into itself (up to a
phase factor or sign) under time reversal. Check this point explicitly.

a.) Solution: We can first express the perturbation as a function of spherical harmon-
ics Y m

l . Then we can use the selection rules for the matrix elements in order to identify all
nonzero elements. We can rewrite the potential

V =λ(x2 − y2) =λ((x + iy)2 + (x − iy)2). (6.29)

Now we identify the spherical harmonics Y ±2
2 as

Y ±2
2 =

√
15

32π

(x ± iy)2

r 2
⇒V = 2λ

√
15

32π︸ ︷︷ ︸
=α

(r 2Y 2
2 + r 2Y −2

2 ). (6.30)

We can now use the selection rules for〈
nlm′|V |nlm

〉=α〈
nlm′|(r 2Y 2

2 + r 2Y −2
2 )|nlm

〉
=α[〈

nlm′|r 2Y 2
2 |nlm

〉+〈
nlm′|r 2Y −2

2 |nlm
〉]

. (6.31)

The first term is nonzero if m′ = m+2 while for the second term m′ = m−2. Since for l = 1, m
is {−1,0,1} the only non-zero components are

〈
nl1|r 2Y 2

2 |nl −1
〉

and
〈

nl −1|r 2Y 2
2 |nl1

〉
. We

can compute the expectation values as〈
nlm′|V |nlm

〉=αˆ r 2R2
nl (Y m′

l )∗Y q
2 Y m

l d3r . (6.32)

For the p-orbital electron we have |n = 2, l = 1〉. Therefore〈
111|αr 2Y 2

2 |11−1
〉=αˆ r 2R2

21(Y 1
1 )∗Y 2

2 Y −1
1 d3r

=−α 3

8π

ˆ
r 2R2

21 sin2ϑe−2iϕY 2
2 d3r =−α 3

8π

ˆ
r 2R2

21 sin4ϑ

√
15

32
d3r

(6.33)〈
11−1|αr 2Y 2

2 |111
〉=αˆ r 2R2

21(Y −1
1 )∗Y −2

2 Y 1
1 d3r

=−α 3

8π

ˆ
r 2R2

21 sin2ϑe+2iϕY −2
2 d3r =−α 3

8π

ˆ
r 2R2

21 sin4ϑ

√
15

32
d3r .

(6.34)
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We see that both integrals are the same, we denote the result as ξ. In a Matrix Form we can
write 〈V 〉 as

〈V 〉 =
0 0 ξ

0 0 0
ξ 0 0

. (6.35)

In order to find the diagonalizing energy eigenstates we solve the eigenvalue problem. We
recieve the following eigenkets and corresponding eigenvalues 0,±ξ

• ψ0 = |210〉 with ∆E = 0

• ψ1 = 1p
2

(|211〉+ |21−1〉) with ∆E = ξ

• ψ1 = 1p
2

(|211〉− |21−1〉) with ∆E =−ξ.

We see that Ψ0 with m = 0 has the original energy eigenvalue, the electric potential forces
the other two states to occupy different energy levels. The original degeneracy has been
completely removed.

6.4 Asymptotic and Convergent series

A sequence of function {ϕn} with ϕn : C /z0 → C ,n = 0,1,2, . . . is called an asymptotic se-
quence as z → z0 if for each n = 0,1,2, . . . we have that

ϕn−1(z) = o(ϕn(z)), z → z0. (6.36)

Let f (z) be a continuous function such that f (z) : z ∈ C /z0 → f (z) ∈ C . We say that f (z)
allows an asymptotic series expansion for z → z0 if there exist an asymptotic sequence {ϕn},
such that for each N = 1,2, . . .

| f (z)−
N−1∑
n=0

anϕn(z)| =O(ϕN (z)), z → z0 (6.37)

or, equivalently

| f (z)−
N−1∑
n=0

anϕn(z)| = o(ϕN−1(z)), z → z0. (6.38)

Asymptotic series often appear in many branches of physics when performing perturbatie
expansions. Note that asymptotic series need not converge; in fact, in typical cases of in-
teres, an asymptotic series will never converge. Similarly, a convergent series need not be
asymptotic.

a) Consider the (uniformly convergent) Taylor series for the exponential function f (z) =
ez . Prove that it does not define an asymptotic series for ez when |z|→∞.

b) Consider now the function

−Ei (−x) = E1(x) =
∞̂

x

exp(−t )

t
dt (6.39)

and prove that E1(x) does not converge in any standard sense, but admits an symptotic
expansion for x →∞.
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a.) Solution: In order to prove that the series is not asymptotic to ez we need to identify
the corresponding asymptotic sequence {ϕn} and apply the second definition (6.38). We
need to show then that the limit

lim
|z|→∞

ez −∑N
n=0 anϕn

ϕN
̸= 0. (6.40)

We can perform this calculation by noting that an = 1/n! and ϕn = zn for the exponential
function

lim
|z|→∞

ez −∑N
n=0 anϕn

ϕN
= lim

|z|→∞
1

zN

(
ez −

N∑
n=0

zn

n!

)

= lim
|z|→∞

1

zN

( ∞∑
k=0

zk

k !
−

N∑
n=0

zn

n!

)

= lim
|z|→∞

1

zN

( ∞∑
n=N+1

zn

n!

)

= lim
|z|→∞

∞∑
n=N+1

zn−N

n!
=∞. (6.41)

Note that, the summands are all positive because n > N . For |z| →∞ this tends to infinity
and the Taylor series for the exponential function is not an asymptotic series.

b.) Solution: We can find the asymptotic series by repeatedly integration E1(x) by parts
where we find an expression for E1(x)−∑N

0 anϕn

E1(x) =
∞̂

x

exp(−t )

t
dt =

(
−exp(−t )

t

)∣∣∣∣∞
x
−

∞̂

x

exp(−t )

t 2
dt

= e−x

x
−

(
−exp(−t )

t 2

)∣∣∣∣∞
x
−2

∞̂

x

exp(−t )

t 3
dt

= e−x

x
− e−x

x2
+2!

e−x

x3
+3!

∞̂

x

exp(−t )

t 4
dt

= e−x

x

(
1− 1

x
+ 2!

x2
− 3!

x3
+ . . .+ (−1)n n!

xn

)
+ (−1)n+1(n +1)!

∞̂

x

exp(−t )

t n+1
dt .

We can now identify the asymptotic sequence as {ϕn} = {e−x x−(n+1)} and {an} = {(−1)nn!}.
The corresponding sum

∞∑
n

e−x

xn+1
(−1)nn! (6.42)
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does not converge in any standard sense. For any fixed x the magnitude of the terms in-
creases as n grows, which implies that this alternating sum diverges. However, it is asymp-
totic to E1(x). We can show this by computing (6.40) and showing, that the limit is zero

lim
|x|→∞

E1(x)−∑N
n

e−x

xn+1 (−1)nn!

e−x x−(N+1)
= lim

|x|→∞
xn+2ex(−1)n+1(n +1)!

∞̂

x

exp(−t )

t n+1
dt > 0. (6.43)

We can now use the fact that

∞̂

x

exp(−t )

t n
dt < x−n

∞̂

x

exp(−t )dt (6.44)

to simplify our expression

lim
|x|→∞

E1(x)−∑N
n

e−x

xn+1 (−1)nn!

e−x x−(N+1)
< lim

|x|→∞��e
x xn+2(−1)n+1(n +1)!

∞̂

x

exp(−t )dt

︸ ︷︷ ︸
��e−x

= lim
|x|→∞

1

x
(−1)n+1(n +1)! = 0. (6.45)

That shows that the limit is sandwiched between zero on the lower bound (because all terms
are positive) and zero for the last evaluation which proves, that the series is asymptotic.
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7 Time independent perturbation theory cont.

7.1 Stark Effect

Consider a hydrogen atom in a uniform electric field E = E z along the z-direction. The
effect of the electric field on the hydrogen atom can be modelled by the inclusion of the
potential V = eE z as a perturbation in the Hamiltonian of the hydrogen atom. In order to
compute the energy shifts caused by the presence of the electric field to the non-degenerate
ground state |100〉 and the fourfold degenerate first excited states |2lm〉, one has to compute
the matrix elements

〈
n′l ′m′|z2|nlm

〉
and

〈
n′l ′m′|z|nlm

〉
, respectively. According to the se-

lection rules there are only three non-vanishing matrix elements:
〈

100|z2|100
〉

, 〈200|z|210〉
and 〈210|z|200〉. Compute explicitly these matrix elements and show that the latter two are
equal.
( Hint: Because of spherical symmetry

〈
100|z2|100

〉 = 1
3

〈
100|r 2|100

〉
. In order to compute

the matrix elements use the analytic expressions for the states |100〉, |200〉 and |210〉.)

Solution: First we note the analytic expressions of the wave functions:

Ψ100 =
√

4Z 3

a3
0

exp

(
−Z r

a0

)√
1

4π

Ψ200 =
√

Z 3

8a3
0

(
−Z r

a0
+2

)
exp

(
− Z r

2a0

)√
1

4π
(7.1)

Ψ210 =
√

Z 3

8a3
0

(
Z r

a0

)
exp

(
− Z r

2a0

)√
1

4π
cosϑ.

We start by calculating the first matrix element:

〈
100|z2|100

〉= ˆ Ψ∗
100 z2︸︷︷︸

r 2 cos2ϑ

Ψ100 d3r

Z=1= 1

a3
0π

ˆ
exp

(
−2r

a0

)
r 2cos2ϑr 2sinϑdr dϑdϕ

= 2�π

a3
0�π

[
−1

3
cos3ϑ

∣∣∣∣π
0︸ ︷︷ ︸

2/3

ˆ
r 4 exp

(
−2r

a0

)
dr . (7.2)

We can solve the radial integral by using the FEYNMANN integration rule:

ˆ
r 4 exp

(
−2r

a0

)
dr =

(a0

2

)5
ˆ

u4e−u du =
(a0

2

)5 d4

dα4

ˆ
e−uαdu︸ ︷︷ ︸
=−1/α

∣∣∣∣
α=1

= a5
0

32

d4

dα4

(
− 1

α

)∣∣∣∣
α=1

= a5
0

32

24

α5

∣∣∣∣
α=1

= a5
0

3

4

⇒ 〈
100|z2|100

〉= a2
0. (7.3)
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The two other matrix elements are matrix elements 〈200|z|210〉 and 〈210|z|200〉 are indeed
equal, because the wavefunctionsΨ200 andΨ210 are real:

〈200|z|210〉 = 1

8a3
0

1

4π

ˆ (
− r

a0
+2

)(
r

a0

)
exp

(
− r

a0

)
cosϑ z︸︷︷︸

r cosϑ

d3r

= 1

8a3
0

1

4π

ˆ (
− r 2

a2
0

+ 2r

a0

)
exp

(
− r

a0

)
r 3 cos2ϑsinϑ︸ ︷︷ ︸

→2/3

dr dϑdϕ

=
4

3
π

8a3
0 ·4π

ˆ (
− r 5

a2
0

+ 2r 4

a0

)
exp

(
− r

a0

)
dr r = a0 u, dr = a0 du

= a4
0

24a3
0

(ˆ
2u4e−u du −

ˆ
u5e−u du

)
= a0

24

(
2

d4

dα4

(
− 1

α

)∣∣∣∣
α=1︸ ︷︷ ︸

=24

− d5

dα5

(
− 1

α

)∣∣∣∣
α=1︸ ︷︷ ︸

=120

)

=−a0
72

24
=−3a0. (7.4)

7.2 Spin-orbit correction for Hydrogen atom

The Hamiltonian for a hydrogen-like atom with a single electron reads

H0 = p2

2m
− Z e2

r
(7.5)

where Z is the atomic number and the potential term is the Coulomb potential. With this
Hamiltonian, for any operator A the following relation holds

〈nlm| [H0, A] |nlm〉 = 0 (7.6)

since H0 acting to the right or left just gives E (0)
n (i. e. energy levels of the unperturbed Hamil-

tonian). Specify A = pr , i. e. the radial component of the momentum operator and evaluate
the commutator above, finding an expression for

〈
r−3

〉
.

Solution: In order to find an expression for
〈

r−3
〉

we try to express the Hamiltonian for a
fixed angular momentum l . For the quantum mechanical angular momentum L̂ = (r̂ ×p̂) we
find

L̂2 = r 2p̂2 − (r̂ · p̂)2 + iℏr̂ · p̂ . (7.7)

In spherical coordinates we have r̂ · p̂ =−iℏ∇=−iℏr∂r . Therefore we can find

p̂2 = L̂2

r 2
− ℏ2

r 2
[(r∂r )2 + r∂r ] = L̂2

r 2
−ℏ2

[
∂2

r +
2

r
∂r

]
. (7.8)
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We can express the last term as

−ℏ2
[
∂2

r +
2

r
∂r

]
= (pr )2, pr =−iℏ

1

r
∂r r. (7.9)

Then we can rewrite the Hamiltonian as

H0 =
p2

r

2m
+ L̂2

2mr 2
− Z e2

r
= p2

r

2m
+ ℏ2l (l +1)

2mr 2
− Z e2

r
, (7.10)

where we used the known eigenvalues of L̂2. We can now calculate the commutator by ap-
plying it to a genericΨ state.

[H0, pr ]Ψ=
[ℏ2l (l +1)

2mr 2
− Z e2

r
, pr

]
Ψ=

[ℏ2l (l +1)

2mr 2
, pr

]
Ψ−

[
Z e2

r
, pr

]
Ψ. (7.11)

We first compute[ℏ2l (l +1)

2mr 2
, pr

]
Ψ= ℏ2l (l +1)

2m

[
1

r 2
,−iℏ

1

r
∂r r

]
= iℏ

ℏ2l (l +1)

2m

(
− 1

r 3
∂r (rΨ)+ 1

r
∂r

(
1

r
Ψ

))
= iℏ

ℏ2l (l +1)

2m

(
− 1

r 3
Ψ−

�
����1

r 2
∂r (Ψ)− 1

r 3
Ψ+

�
����1

r 2
∂r (Ψ)

)
=−iℏ

ℏ2l (l +1)

mr 3
Ψ. (7.12)

Now we compute the second commutator

−
[

Z e2

r
, pr

]
Ψ= Z e2iℏ

[
1

r
,

1

r
∂r r

]
= Z e2iℏ

(
1

r 2
∂r (rΨ)− 1

r
∂r (Ψ)

)
= Z e2iℏ

(
1

r 2
Ψ+

�
�

�
�1

r
∂r (Ψ)−

�
�

�
�1

r
∂r (Ψ)

)
= iℏ

Z e2

r 2
Ψ. (7.13)

Now we can combine the results to find the total commutator

[H0, pr ] = iℏ
(

Z e2

r 2
− ℏ2l (l +1)

mr 3

)
. (7.14)

Now we can use (7.6) to find

0 = iℏ
〈

nlm|Z e2

r 2
− ℏ2l (l +1)

mr 3
|nlm

〉
⇒

〈
Z e2

r 2

〉
=

〈ℏ2l (l +1)

mr 3

〉
⇒ 〈

r−3〉= mZ e2

ℏ2l (l +1)

〈
r−2〉= 1

a0

1

l (l +1)

〈
r−2〉 . (7.15)
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7.3 2-state system

The Hamiltonian for a 2-state system can be written as

H =
(

E 0
1 λ∆

λ∆ E 0
2

)
. (7.16)

What are the eigenfunctions for the unperturbed problem, i e. λ= 0?

1. Solve the λ ̸= 0 problem exactly, in the eigenbasis of the unperturbed Hamiltonian, by
calculating eigenvalues and eigenfunctions.

2. Now, in the above picture, treat the problem perturbatively, i. e. |λ∆| ≪ |E 0
1 −E 0

2 |. Cal-
culate the energies up to second order, and compare with the exact solution.

3. Finally, let E 0
1 → E 0

2 . How should we now solve this problem? Find the first order per-
turbed eigenvalues. Compare once again to the exact solution.

Solution: For the unperturbed problem, the energy eigenvalues are E = E 0
1 ,E 0

2 with the
eigenfunctions |E1〉 and |E2〉. For the case λ ̸= 0 we can calculate the eigenvalues by de-
manding

det

(
E 0

1 −E λ∆

λ∆ E 0
2 −E

)
= (E 0

1 −E)(E2 −E)−λ2∆2 != 0 (7.17)

⇒ E 2 −E(E 0
1 +E 0

2)+E1E2 −λ2∆2 = 0. (7.18)

We can solve this quadratic equation which yields

E = E1 +E2

2
± 1

2

√
(E 0

1 −E 0
2)2 +4λ2∆2. (7.19)

In a perturbative approach we approximate the energy eigenvalues by using ε= λ∆
[E 0

1−E 0
2 ]
≪ 1.

We use the expansion
p

1+x ≈ 1+ 1
2 x which leads to

E = E1 +E2

2
± 1

2
(E 0

1 −E 0
2)

√
1+4

λ2∆2

E 0
1 −E 0

2

= E1 +E2

2
± 1

2
(E 0

1 −E 0
2)

√
1+4ε2

= E1 +E2

2
± 1

2
(E 0

1 −E 0
2)

(
1+2ε2 + . . .

)
. (7.20)

This leads to the energy modifications

E+ = E1 + (E1 −E2)ε2 = E1 + λ2∆2

E1 −E2
(7.21)

E− = E2 − (E1 −E2)ε2 = E1 − λ2∆2

E1 −E2
. (7.22)
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7.4 Zeeman Effect (BONUS)

Consider a gas of excited particles immersed in a constant magnetic field. Its emission spec-
trum will be characterized by a multiplicity of lines such that each line, single in absence of
the magnetic field, splits into more lines4.When dealing with low-intensity magnetic

fields, the lines appear to be very close to each other. This phenomenon is called Zeeman
effect. Traditionally, one distinguished the Zeeman effect into two subcategories: the normal
Zeeman effect, that could be interpreted even without recurring to quantum mechanics, and
the "abnormal" effect, which instead required the introduction of the concept of spin.

Classically, the energy I radiated by a charged particle in motion over a unit of time can be
computed from the dipole approximation as

I = 2

3

e2

c3
r̈ 2. (7.23)

In quantum mechanics the equation above is valid when considering mean values, hence
r̈ →〈r̈ 〉. The matric element of r̈ between two generic stationary states |nlm〉 of the hydro-
gen state is given by 〈

n′l ′m′|r̈ |nlm
〉=−ω2

n,n′
〈

n′l ′m′|r |nlm
〉

, (7.24)

where ωn,n′ = En−En′
ℏ . From the requirement I ̸= 0 one finds that an atom can transition

between two different energy levels |nlm〉 and
∣∣n′l ′m′〉 only if l ′ = l ±1 and m′ =±1. Indeed,

because of parity, transitions with l ′ = l are not allowed. Moreover, since spin is conserved,
when considering the spin quantum number ms we find the rule m′

s = ms . Now consider a
hydrogen-like atom immersed in a magnetic field. Let us denote with H0 the Hamiltonian in
the absence of a magnetic field. If the atom has no spin, then the total Hamiltonian will be
simply given by

H = H0 + e

2mc
B ·L = H0 + e

2mc
B Lz (7.25)

where we assumed that the field B is directed along the z-axis.

• Compute the energy spectrum of the atom and compare it to the energy spectrum you
would obtain in absence of the field. How many distinct energy levels can you have for
a fixed value of n? What is their separation?

• Discuss the possible transitions permitted by the rules you derived above.

The fact, that H0 and Lz commute, shows that both operators have the same eigenstates
|nlm〉. We can calculate the new energy eigenstates by using the SCHRÖDINGER equation
H |Ψ〉 = E |Ψ〉: (

H0 + e

2me c
B Lz

)
|nlm〉 =

(
H0 + e

2me c
B mℏ

)
|nlm〉

E = En +µB m B , µB = eℏ
2me c

. (7.26)

4A similar multiplication of lines is found when the gas is immersed in an external electric field. This effect is
called Stark effect, c. f. Landau-Lifschitz, page 314 and following.
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For a given n, we have l = 0, . . . ,n − 1 and for each l , m varies between −l and +l which
leads to 2l + 1 sub-states. The energy level En is therefore effectively divided in 2(n − 1)+
1 = 2n −1 values. The energy separation ∆m is ∆m = µB B m. Instead of transmissions with
∆E = En−En′ we now find transitions∆E = (En+∆m)−(En′+∆m′) with the condition m′ = m
or m′ = m ±1.

One of the critical empirical pieces of information that came from the study of the ZEEMAN

spectra is that also the levels corresponding to orbital angular momentum l = 0 can split.
This “anomalous” level multiplication suggested that particles might have an intrinsic angu-
lar momentum, which has been interpreted as spin.

• To account for the contribution of spin in our Hamiltonian, write

H = H0 + e

2me c
B(Lz +2Sz) (7.27)

and repeat the two points above.

When we also consider spins without relativistic corrections, we can easily repeat the pro-
cedure by noting that the spin operator S acts in a different space from L and thus surely
commutes with H . Then we can find eigenvalues of Sz as ℏms which leads to energies

E = En + e

2me c
Bℏ(m +2ms). (7.28)

For a fixed n, we will have as many energy levels as the values m+2ms can take on. From the
addition of angular momenta we know that −(l +2s) ≤ m +2ms ≤ l +2s holds, meaning that
we have 2l +4s +1 different values if l ̸= 0 and 2s +1 values if l = 0. We find, that the energy
separation is∆=µB B(m+2ms). Since we have m′

s = ms , there will be no difference from the
emission lines obtained in the spinless case.

• To account for relativistic effects we should also include in H0 the spin-orbit interac-
tion, which is proportional to a term L · S. With this addition, the total angular mo-
mentum J = L + S is still a conserved quantity. Are the L and S vector components
still conserved? And what about L2 and S2? From the considerations above, deduce
that a good basis of eigenstates is given by the states {

∣∣l s j m j
〉

}, where l , s, j ,m j are
respectively quantum numbers of L2,S2, J 2, Jz .

We can see that the total angular momentum J = L +S is still conserved, as

[L ·S, Ji ] = [L ·S,Li +Si ] = [Lk Sk ,Li ]+ [Lk Sk ,Si ]

= [Lk ,Li ]Sk +Lk [Sk ,Li ]︸ ︷︷ ︸
=0

+Lk [Sk ,Si ]+ [Lk ,Si ]︸ ︷︷ ︸
=0

Sk

= [Lk ,Li ]Sk +Lk [Sk ,Si ] = iεki j L j Sk + iεki j S j Lk

= iεki j (L j Sk +S j Lk )︸ ︷︷ ︸
symmetric

. (7.29)

With the same strategy we can show that Li ,Si are not conserved. On the other hand, both
L2 and S2 are conserved, since [Li ,L2] = 0 = [Si ,S2]

[L ·S,L2] = [Lk Sk ,L2] = [Lk ,L2]︸ ︷︷ ︸
=0

Sk +Lk [Sk ,L2]︸ ︷︷ ︸
=0

= 0. (7.30)

This suggests, that the good basis of eigenstates is indeed {
∣∣l s j m j

〉
}.
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• prove that the first order modification induced by the presence of the magnetic field is
given by

∆E J = B

(
µB m J + e

2me c
〈Sz〉

)
. (7.31)

Hint: Rewrite the Hamiltonian as

H = H0 + e

2me c
B(Jz +Sz). (7.32)

This form highlights that the perturbation due to the magnetic field on the eigenstates
of H0 is given by the sum of two terms, one proportional to Jz and one to Sz . In princi-
ple, one should apply time-independent perturbation theory in the case of degenerate
eigenstates. However, since the eigenstates of H0 are also eigenstates of Jz and that Jz

breaks the degeneracy, you can instead consider Sz as an ulterior perturbation of the
non-degenerate states.

As already hinted in the task, we can simply use non-degenerate perturbation theory to com-
pute the first energy correction. If we rewrite the Hamiltonian as in (7.32), we see that, be-
cause Jz commutes with H0, it has the same eigenstates and thus eigenvalues ℏm j . If we
apply non-degenerate perturbation theory we find

∆E =
〈

nlm| e

2me c
B(Jz +Sz)|nlm

〉
= B

(
µB m j + e

2me c
〈Sz〉

)
. (7.33)

Compute 〈Sz〉. From the expression ∆E j = gµB Bm j identify the Landè factor g . Proceed as
follows:

• Using that [Jk ,Sl ]iεklmSm prove that

[J−,S+] =−2Sz , [J+,S+] = 0 (7.34)

with J± = Jx ± iJy and S± = Sx ± iSy .

• By evaluating the matrix element
〈

j l s(m j +1)|[J+,S+]| j l s(m j −1)
〉

prove that the ma-
trix elements of J+ and S+ are proportional:〈

j l s(m j +1)|J+| j l sm j
〉〈

j l s(m j +1)|S+| j l sm j
〉 =

〈
j l sm j |J+| j l s(m j −1)

〉〈
j l sm j |S+| j l s(m j −1)

〉 =α. (7.35)

Use the completeness of the
∣∣ j l sm j

〉
base.

• Evaluate
〈

j l sm j |[J−S+]| j l sm j
〉=αm j .

• Evaluate the mean value of J · S = (J 2 + S2 −L2)/2 on the state
∣∣ j l sm j

〉
. Repeat the

procedure, using J ·S = (J+S−+ J−S+)/2+ JzSz . Compare the two results and find α
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At first we prove the commutation relations

[J±,S+] = [Jx ± iJy ,Sx + iSy ] = [Lx +Sx ± i(Ly +Sy ),Sx + iSy ]

= [Sx ,Sx + iSy ]± i[Sy ,Sx + iSy ] = i[Sx ,Sy ]∓ i[Sx ,Sy ]

=
{

0 J+
−2Sz J−

. (7.36)

Since [J+,S+] = 0 we can write

0 = 〈
j l s(m j +1)|[J+,S+]| j l s(m j −1)

〉
= 〈

j l s(m j +1)|J+S+| j l s(m j −1)
〉−〈

j l s(m j +1)|S+ J+| j l s(m j −1)
〉

= 〈
j l s(m j +1)|J+

∣∣ j l sm j
〉〈

j l sm j
∣∣S+| j l s(m j −1)

〉
−〈

j l s(m j +1)|S+
∣∣ j l sm j

〉〈
j l sm j

∣∣ J+| j l s(m j −1)
〉

. (7.37)

This immediately yields (7.35). This implies that the matrix elements of J+ are proportional
to those of S+, which helps us to evaluate〈

j l sm j |[J−S+]| j l sm j
〉= 〈

j l sm j |J−S+| j l sm j
〉−〈

j l sm j |J+S−| j l sm j
〉

= 〈
j l sm j |J−

∣∣ j l s(m j +1)
〉〈

j l s(m j +1)
∣∣S+| j l sm j

〉
. (7.38)
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8 Time Dependent Perturbation Theory

8.1 Dirac (interaction) picture

Recall the “interaction” picture from your lectures in the context of a time dependent pertur-
bation. Starting with a Hamiltonian given by

H(t ) = H0 +V (t ), V (0) = 0, H0 ̸= H0(t ). (8.1)

Sketch the time evolution of interaction kets |α, t〉I = exp
(

iH0t
ℏ

)
|α, t〉 and interaction opera-

tors AI (t ) = exp
(

iH0t
ℏ

)
A(t )exp

(
− iH0t

ℏ

)
.

Solution: First we try to express the time evolution of the interaction kets:

iℏ
∂

∂t
|α, t〉I = iℏ

∂

∂t

(
exp

(
iH0t

ℏ

)
|α, t〉

)
= i��ℏexp

(
iH0t

��ℏ

)
iH0

ℏ
|α, t〉+exp

(
iH0t

ℏ

)
H︸︷︷︸

H0+V (t )

|α, t〉

= exp

(
iH0t

ℏ

)
(−H0 +H0 +V (t )) |α, t〉

= exp

(
iH0t

ℏ

)
V (t )exp

(
− iH0t

ℏ

)
︸ ︷︷ ︸

VI (t )

exp

(
iH0t

ℏ

)
|α, t〉︸ ︷︷ ︸

|α,t〉I

iℏ
∂

∂t
|α, t〉I =VI (t ) |α, t〉I . (8.2)

In the second step we used the SCHRÖDINGER equation iℏ∂t |Ψ〉 = H |Ψ〉. We can now also
evaluate the time evolution of the operator AI (t ) assuming, that A(t ) ist not explicitly time
dependent:

dA

dt
= ∂

∂t

(
exp

(
iH0t

ℏ

))
A(t )exp

(
− iH0t

ℏ

)
+exp

(
iH0t

ℏ

)
A(t )

∂

∂t

(
exp

(
− iH0t

ℏ

))
= iH0

ℏ
AI (t )− AI (t )

iH0

ℏ
= 1

iℏ
[AI (t ), H0]. (8.3)
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8.2 Spin-Magnetic Resonance

Consider a spin 1/2 system (e. g., a bound electron) subjected to a time independent uni-
form magnetic field in the z-direction and, in addition, to a time dependent magnetic field
rotating in the x-y-plane:

B = B0ẑ +B1(x̂ cos(ωt )+ ŷ sin(ωt )), (8.4)

with B0 and B1 constant. Apply the solution of the two-state problem to this system. Identify
the resonant frequency, and find the time separation between two different instants in which
the probability of the system being entirely in the spin-up state is maximum.
Hint: Recall that the Hamiltonian of this system is H = µ ·B , with µ = e

me c S. Write the Si

operators in their ket-bra form, i. e. as linear combinations of {|+〉〈+| , |−〉〈−| , |±〉〈∓|}.

Solution: We start by writing down the components of the spin operator S:

Sz = ℏ
2

(|+〉〈+|− |−〉〈−|), Sx = ℏ
2

(|−〉〈+|+ |+〉〈−|), Sy = iℏ
2

(|−〉〈+|− |+〉〈−|).

We can now write the Hamiltonian as

H =µ ·B = e

me c
S ·B

= e

me c

(
SzB0 +B1(Sx cos(ωt )+Sy sin(ωt ))

)
= ℏe

2me c

[
SzB0︸ ︷︷ ︸

H0

+B1
(
(|−〉〈+|+ |+〉〈−|)cos(ωt )+ i(|−〉〈+|− |+〉〈−|)sin(ωt )

)]
= ℏe

2me c

[
H0 +B1eiωt |−〉〈+|+B1e−iωt |+〉〈−|]. (8.5)

We can write the time dependent part of the Hamiltonian as a harmonic perturbation

V (t ) = ℏγ
(
eiωt |−〉〈+|+e−iωt |+〉〈−|), with γ= B1e

2me c
. (8.6)

We can identify the resonant frequency by finding the energy eigenvalues of H0 for both
states |+〉 and |−〉 which are ± e

me c B0
ℏ
2 :

ω± = 1

ℏ

(
e

me c
B0

ℏ
2
+ e

me c
B0

ℏ
2

)
= eB0

me c
. (8.7)

We can find the coefficients cn(t ) for the time evoluted state by using

iℏċn(t ) =∑
m

eiωnm t Vnmcm(t ). (8.8)

This leads to

iċ+ = eiω±tγe−iωt c− = γei(ω±−ω)t c−
iċ− = γe−i(ω±−ω)t c+. (8.9)
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We can combine both differential equations into a single second order equation by differen-
tiating:

−c̈− = γe−i(ω±−ω)t (iċ+)︸︷︷︸
γexp(i(ω±−ω)t )c−

+γ(ω±−ω)e−i(ω±−ω)t c+︸ ︷︷ ︸
i/γc−

⇒ 0 = c̈−+γ2c−+ i(ω±−ω)ċ−. (8.10)

If we choose the boundary conditions in such a way, that the system is in state |+〉 at t = 0,
so that c1(0) = 1 and c2(0) = 0 we find a solution to (8.10) as

c−(t ) =−i
γ

Ω
e

i
2 (ω−ω±)t sin(Ωt ), withΩ2 = γ2 + 1

4
(ω−ω±)2. (8.11)

We now want to find two different instants in which the probability of the system being en-
tirely in state |+〉 is maximum. This obviously occurs atω=ω± because thenΩ is minimized.
The distance between those two instants is governed by the sin(Ωt ) term. ForΩ= γ we find
for the period of such an oscillation

γ ·T = 2π ⇒ T = 2π

γ
= 4πme c

B1
. (8.12)
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8.3 Spin states in time

A composite system is made up of two spin 1
2 objects. For t < 0, the Hamiltonian is inde-

pendent on spin and can be considered 0 by properly adjusting the energy scale. For t > 0,
instead, the Hamiltonian is

H =
(

4∆

ℏ2

)
S1 ·S2. (8.13)

The system is in |+−〉 for t ≤ 0. Find the probability of finding the system in the states
|++〉 , |+−〉 , |−+〉 , |−−〉 as a function of time:

1. By solving the problem exactly.

2. By solving the problem using first-order time-dependent perturbation theory with H
as a perturbation switched on at t = 0. Compare this solution with the previous point
and state under which condition it is correct.

1.) Solution: We start solving this problem by computing S1 ·S2 using the representations
of Sx ,Sy ,Sz . We obtain the following expression

S1S2 = S1xS2x +S1y S2y +S1zS2z

= ℏ2

4

(
(|−〉〈+|+ |+〉〈−|)1(|−〉〈+|+ |+〉〈−|)2 + i2(|−〉〈+|− |+〉〈−|)1(|−〉〈+|− |+〉〈−|)2

+ (|+〉〈+|− |−〉〈−|)1(|+〉〈+|− |−〉〈−|)2

)
= ℏ2

4

(
�����|−−〉〈++|+ |−+〉〈+−|+ |+−〉〈−+|+�����|++〉〈−−|

+ i2(�����|−−〉〈++|− |−+〉〈+−|− |+−〉〈−+|+�����|++〉〈−−|)
+ (|++〉〈++|+ |−+〉〈−+|+ |+−〉〈+−|+ |−−〉〈−−|)

)
= ℏ2

4

(
2 |−+〉〈+−|+2 |+−〉〈−+|+ |++〉〈++|+ |−+〉〈−+|+ |+−〉〈+−|+ |−−〉〈−−|

)
.

We can rewrite the Hamiltonian now in matrix representation using |1〉 = |++〉 , |2〉 = |+−〉 , |3〉 =
|−+〉 , |4〉 = |−−〉 as

H =∆


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

. (8.14)

The outer part of this matrix is already diagonalized, so we just concentrate on the inner
part:

det

(−1−λ 2
2 −1−λ

)
= (1+λ)2 −4

!= 0. (8.15)
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This leads to the eigenvalues λ = 1,−3. We can calculate the corresponding eigenvectors
simply by solving the eigenvalue equation

λ= 1 :

(−1 2
2 −1

)
·
(

x
y

)
= 1

(
x
y

)
. (8.16)

This leads to −x +2y = x which gives the solution x = y . We normalize the eigenvector x2 +
y2 = 1 which results in x = y = 1/

p
2.

For λ=−3 we perform the same steps:

λ=−3 :

(−1 2
2 −1

)
·
(

x
y

)
=−3

(
x
y

)
. (8.17)

This results in −x +2y =−3x giving the solution x =−y . We choose x to be positive with the
normalized value of x = 1/

p
2.

This result suggests a new basis with the following vectors

|1〉 = |++〉 E =∆
|2〉 = |−−〉 E =∆
|3〉 = 1p

2
(|+−〉+|−+〉) E =∆

|4〉 = 1p
2

(|+−〉−|−+〉) E =−3∆

(8.18)

We have now created a diagonalized and time independent Hamiltonian H = diag(1,1,1,−3).
We time evolution is simply given by applying the time evolution operator

U (t , t0 = 0) = exp

(
−i

H t

ℏ

)
, |α, t〉 =U (t ) |α〉 . (8.19)

The probability of finding the system in the states given in the task is just p = |〈β|α, t
〉 |2. For

|++〉 and |−−〉 we immediately obtain

p(|+−〉→ |++〉) = 0 = p(|+−〉→ |−−〉), (8.20)

because both states are orthogonal to |+−〉 and for time independent Hamiltonians, orthog-
onal states stay orthogonal under time evolution (intrinsic property of unitary transforma-
tions such as the time evolution operator).

In order to find the probability for the other two states we write |+−〉 in the new basis as
|+−〉 = 1p

2
(|3〉+ |4〉). This leads to an expression for the time evoluted state |α, t〉

|α, t〉 =U (t ) |+−〉 = 1p
2

(|3〉+ |4〉)

= 1p
2

exp

(
−i

H t

ℏ

)
︸ ︷︷ ︸

H→∆

|3〉+exp

(
−i

H t

ℏ

)
︸ ︷︷ ︸

H→−3∆

|4〉


= 1p

2

(
e−iωt |3〉+eiωt |4〉

)
(8.21)

= 1p
2

[(
e−iωt +ei3ωt ) |+−〉+ (e−iωt −ei3ωt ) |−+〉]. (8.22)
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Now we can calculate the probability

p = |〈+−|α, t〉 |2 =
∣∣∣∣1

2
(〈3|+〈4|)

(
e−iωt |3〉+eiωt |4〉

)∣∣∣∣2

=
∣∣∣∣1

2
(e−iωt +eiωt )

∣∣∣∣2

= 1

4

(
e−iωt |3〉+eiωt |4〉

)
·
(
eiωt |3〉+e−iωt |4〉

)
= 1

4

(
2+ei4ωt +e−i4ωt )

= 1

2
[1+cos(4ωt )]. (8.23)

Analogously we find

p = |〈−+|α, t〉 |2 = 1

2
[1−cos(4ωt )]. (8.24)

We can summarize this to

p =


0 |++〉 , |−−〉
1
2 [1+cos(4ωt )] ≈ 1−4ω2t 2 |+−〉
1
2 [1−cos(4ωt )] ≈ 4ω2t 2 |−+〉

(8.25)

2.) Solution: We now try to solve this problem perturbatively with H as a perturbation.
We note that H = H0 +V = V . Using the results from the lecture for zeroth and first order
perturbation, we find that

c(0)
n = δni (8.26)

c(1)
n =− i

ℏ

tˆ

0

dt ′ eiωni t ′Vni (t ′). (8.27)

Because H0 = 0 all energy the transition frequency ωni = 0 is always zero. The perturbation
matrix V is just (8.14) in the old basis.

The initial state is |i 〉 = |+−〉 ≡ |2〉. We obtain the transition probability p(i → n) by

p(i → n) = |c(0)
n (t )+ c(1)

n (t )|2. (8.28)

Let us start with |n〉 = |++〉 ≡ |1〉 and |n〉 = |−−〉 ≡ |4〉. The zeroth order is obivously zero
because i ̸= n. The first order can be calculated using (8.27). We note that V12 = 0 = V42 and
therefore the first order vanishes, too.

Lets move on to |n〉 = |+−〉. We can calculate the first order as

c(1)
n =− i

ℏ

tˆ

0

dt ′ eiωni t ′︸ ︷︷ ︸
=1

Vni (t ′)︸ ︷︷ ︸
=−∆

= iωt , with ω= ∆
ℏ

. (8.29)
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Therefore the transition amplitude can be written as

p(|+−〉→ |+−〉) = |1+ iωt |2 = 1−ω2t 2. (8.30)

The last calculation is for |n〉 = |−+〉 which is in first order

c(1)
n =− i

ℏ

tˆ

0

dt ′ eiωni t ′︸ ︷︷ ︸
=1

Vni (t ′)︸ ︷︷ ︸
=−2∆

=−i2ωt , with ω= ∆
ℏ

. (8.31)

The transition amplitude is then

p(|+−〉→ |−+〉) = |− i2ωt |2 = 4ω2t 2. (8.32)

We can summarize the results as

p =


0 |++〉 , |−−〉
1−ω2t 2 |+−〉
4ω2t 2 |−+〉

(8.33)

The reason why the solution for the |+−〉 state does not equal the approximation in (8.25), is
that higher order perturbations also lead to more contributions of second order ω2t 2.

The approximation is only valid for ωt ≪ 1.
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9 Time Dependent Perturbation Theory cont.

9.1 Dipole Approximation

The validity of the dipole approximation

eiωc n̂x = 1+ i
ω

c
n̂x + . . . (9.1)

relies on the fact that the emission wavelength λ is much larger than the typical atomical
dimension. Prove this by relying on scaling arguments.
Hint: Consider an hydrogen-like atom: the radiation ℏω must be of the same order of mag-
nitude of the atomic level spacing. Use that Ratom ∼ a0/Z and the fine structure constant

α= 1
137 = e2

cℏ .

Solution: We want to show that the wavelength of the typical radiation involved in emis-
sion and absorption processes is much larger than the typical atomic dimensions Ratom.

We start with the atomic level spacing in hydrogen. The energy levels are given by the fol-
lowing formula:

En =−1

2

me e4

ℏ2

1

n2
=−1

2
me c2α2 1

n2
. (9.2)

The typical atomic dimensions are of the order of the Bohr radius given as

Ratom ∼ a0 = ℏ2

me e2
= ℏ

me cα
. (9.3)

The dipole approximation is valid if ω
c n̂x ≪ 1. If we identify Ratom = n̂x , then we get for

n = 1

ω

c︸︷︷︸
En /(ℏc)

Ratom ≪ 1

⇒ 1

2
me c2α2 1

ℏc
· ℏ

me cα
≪ 1

⇒ 1

2
α≈ 1

274
≪ 1 (9.4)

that the wavelength of the atomic levels is much larger than Ratom

ω

c
Ratom ≪ 1 ⇒ 2π

Ratom

λ
≪ 1 ⇒ Ratom ≪λ. (9.5)
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9.2 Matrix elements of the position of the SHO

Derive the matrix elements
〈

n|x|n′〉 of the position operator x for the simple harmonic os-
cillator.
Hint: First express x in terms of the ladder operators, then use the action of the latter on the
energy eigenstates |n〉 and the orthonormality of |n〉.)

Solution: At first we identify the ladder operators that were already given in (1.2) as

a =
√

mω

2ℏ

(
x + i

p

mω

)
, a† =

√
mω

2ℏ

(
x − i

p

mω

)
. (9.6)

We can easily see that the x operator can be obtained by the following combination of ladder
operators:

x = 1

2

√
2ℏ

mω
(a +a†). (9.7)

We also note the action of the ladder operators on the eigenstates |n〉 on the SHO

a |n〉 =p
n |n −1〉 , a† |n〉 =p

n +1 |n +1〉 . (9.8)

We can now simply calculate the matrix element as follows

〈
n|x|n′〉= 1

2

√
2ℏ

mω

〈
n|a +a†|n′

〉
=

√
ℏ

2mω

(〈
n|a|n′〉+〈

n|a†|n′
〉)

=
√

ℏ
2mω

(p
n′ 〈n|n′−1

〉︸ ︷︷ ︸
δn,n′−1

+
p

n′+1
〈

n|n′+1
〉︸ ︷︷ ︸

δn,n′+1

)

=
√

ℏ
2mω

(p
n′δn,n′−1 +

p
n′+1δn,n′+1

)
=

√
ℏ

2mω

(p
n +1δn,n′−1 +

p
nδn,n′+1

)
. (9.9)
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9.3 Radiation from a Harmonic Oscillator

Calculate the power emitted through spontaneous emission from a SHO. (Obviously the SHO
has a mass me and carries an electric charge e ̸= 0. Otherwise, the solution is trivial) Show
that at the n-th level the mean power emitted is given by

P = 2nℏe2ω3

3me c3
. (9.10)

Compare with the power emitted from a classical oscillator, and see the similarity, if there is
any.
Hint: You need to calculate the spontaneous transition rate from a final state f to a ini-
tial state i , w spn

f i . You may make use of the “detailed balance principle” and the well known

forms of the transition rates for absorption and stimulated emission induced by unpolarized
isotropic radiation:

R(i → f )abs = 4π2

3ℏ2
d 2

i f ϱ(ω f i )

R( f → i )stm = 4π2

3ℏ2
d 2

i f ϱ(ωi f ),

(9.11)

where the matrix element of the dipole moment di f = 〈
f |d |i〉 and ϱ(ω f i ) is the Blackbody

spectrum at the emission/absorption frequency.

Solution: We start with the detailed balance principle that was given in the lecture:

R(i → f )

ϱ(ωi f )
= R( f → i )

ϱ(ω f i )
. (9.12)

This leads to R(i → f ) = R( f → i ). We now assume a thermodynamical equilibrium. We note
the rate of spontaneous emission as R̄( f → i ). We can then write

N f (R( f → i )+ R̄( f → i )) = Ni R( f → i ). (9.13)

We can now insert (9.11) and solve for the energy density ϱ(ωi f )

⇒ R( f → i ) = N f

Ni −N f
R̄( f → i )

⇒ ϱ(ωi f ) = 1

d 2
i f

3ℏ2

4π2
R̄( f → i )

1
Ni

N f
−1

. (9.14)

We can further assume that the population of the energy states follows a Boltzmann distribu-
tion, namely N (En) = exp

(−βEn
)

withβ= 1
kB T . Then we can rewrite Ni

N f
= exp

(−β(Ei −E f )
)=

exp
(
βℏω f i

)
. This leads to

ϱ(ω f i ) = 1

d 2
i f

3ℏ2

4π2
R̄( f → i )

1

exp
(
βℏω f i

)−1
. (9.15)

66



9.3 Radiation from a Harmonic Oscillator Advanced Quantum mechanics

In the classical limit ℏ→ 0 we expect the energy density to correspond to the Rayleigh-Jeans
law given as

ϱ(ω f i ) =
ω2

f i

π2c3

1

β
. (9.16)

For ℏ→ 0 we can approximate exp
(
βℏω f i

)= 1+βω f i . Inserting (9.15) into (9.3) yields

ω2
f i

��π
2c3

1

��β
= 1

d 2
i f

3ℏ2

4��π
2

R̄( f → i )
1

�1+ ��βℏω f i − �1

⇒ R̄( f → i ) = 4

3

ω3
f i

ℏc3
d 2

i f . (9.17)

The expectation value of the dipole moment d f i can be calculated using the result from Task
1. For f = i +1 we can write the expectation value as

d f i =
〈

f |ex|i〉= e

√
ℏ

2mω f i

(p
n +1δn,n′−1︸ ︷︷ ︸

=0

+pnδn,n′+1︸ ︷︷ ︸
=1

)
d 2

f i = e2 ℏn

2mω f i
. (9.18)

We can insert this result into (9.17) giving

R̄( f → i ) = 4

3

ω3
f i

��ℏc3
·e2 ��ℏn

2mω f i
= 2

3

ω2
f i e2n

c3me
. (9.19)

Now we can find the emitted power by stimulated emission as the product of the photon
energy and the transition rate R̄( f → i ):

P = ℏω f i R̄( f → i ) =
2nℏe2ω3

f i

3me c3
. (9.20)
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9.4 Time-dependent perturbed SHO

Consider a one-dimensional simple harmonic oscillator whose classical angular frequency
is ω0. For t < 0 it is known to be in the ground state. For t > 0 there is also a time-dependent
potential

V (t ) = F0x cos(ωt ), (9.21)

where F0 is constant in both space and time. Obtain an expression for the expectation value
〈x〉 as a function of time using time-dependent perturbation theory to lowest nonvanishing
order. Is this procedure valid for ω≈ω0?

Hint: You may use
〈

n′|x|n〉=√
ℏ/2mω0(

p
n +1δn′,n+1 +

p
nδn′,n−1). (9.22)

Solution: We use again the time dependent perturbation coefficients to obtain an expres-
sion for the time evoluted state |n(t )〉 by using that |n(t = 0)〉 = |0〉

c(0)
n = 〈n|1|0〉 = δn0. (9.23)

The energy of a harmonic oscillator in the level n is given as En = ℏω0
(
n + 1

2

)
.

The formula for the first order was given in the lecture as

c(1)
n =− i

ℏ

tˆ

0

dτ〈n|VI |0〉 =− i

ℏ

tˆ

0

dτ
〈

n|e i
ℏ H0τF0x cos(ωτ)e

−i
ℏ H0t |0

〉

=− i

ℏ

tˆ

0

dτe
i
ℏ (En−E0)τF0 cos(ωτ)〈n|x|0〉 (9.22)= − i

ℏ

tˆ

0

dτeiω0nτF0 cos(ωτ)

√
nℏ

2mω0
δn,1

c(1)
1 =− 1√

2mℏω0

F0

tˆ

0

dτ
i

2
eiω0τ

(
eiωτ+e−iωτ)

︸ ︷︷ ︸
= i

2

tˆ

0

dτ
(
ei(ω0+ω)τ+ei(ω0−ω)τ)= i

2

[
ei(ω0+ω)τ

i(ω0 +ω)
+ ei(ω0−ω)τ

i(ω0 −ω)

]t

0

= 1

2

[
ei(ω0+ω)t −1

i(ω0 +ω)
+ ei(ω0−ω)t −1

i(ω0 −ω)

]
c(1)

1 =− F0

2
√

2mℏω0

[
ei(ω0+ω)t −1

i(ω0 +ω)
+ ei(ω0−ω)t −1

i(ω0 −ω)

]
. (9.24)

Now we can express the state |n(t )〉 in the Schrödinger picture:

|n(t )〉S = e−
i
ℏ H0t |n(t )〉I =

∑
n

cn(t )e−
i
ℏ H0t |n〉

= e−
i
2ω0t |0〉+e−i 3

2ω0t c(1)
1 (t ) |1〉 . (9.25)
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Now, we can finally calculate the expectation value of x as

〈x〉 = 〈n(t )|x|n(t )〉 =
(
〈0|e i

2ω0t +〈1|ei 3
2ω0t c∗1

)
x
(
e−

i
2ω0t |0〉+e−i 3

2ω0t c(1)
1 (t ) |1〉

)
= e−iω0t c1 〈0|x|1〉+eiω0t c∗1 〈1|x|0〉 = 2Re

[
e−iω0t c1 〈0|x|1〉

]
. (9.26)

Again by using (9.22) we obtain 〈0|x|1〉 =
√

ℏ
2mω which leads to

〈x〉 = 2

√
ℏ

2mω

[
e−iω0t −F0

2
√

2mℏω0

(
ei(ω0+ω)t −1

i(ω0 +ω)
+ ei(ω0−ω)t −1

i(ω0 −ω)

)]

=− F0

2mω0
Re

[
eiωt −e−iω0t

ω0 +ω
+ e−iωt −eiω0t

ω0 −ω
]

=− F0

2mω0

[
cos(ωt )−cos(ω0t )

ω0 +ω
+ cos(ωt )−cos(ω0t )

ω0 −ω
]

=− F0

2mω0

(cos(ωt )−cos(ω0t ))(ω0 −��ω+ω0 −��ω)

ω2
0 −ω2

=−F0

m

cos(ωt )−cos(ω0t )

ω2
0 −ω2

. (9.27)
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10 Scattering

10.1 Scattering at a potential barrier

Consider a one-dimensional potential barrier with V ̸= 0 for −a < x < a. An incoming wave
from the region I is moving to the right:

Ψk =
{

eikx +ρ(k)e−ikx , x <−a

τ(k)eikx , x > a
, (10.1)

where k > 0.

Calculate the solution at t →±∞ for the wave packet

ψ(x, t ) =
ˆ
φ(k)Ψk (x)e−

iℏk2

2m t dk . (10.2)

Use the stationary phase approximation for the integral and then take the limits to show that
the final result is

ψ(x, t ) =
√

2πim

ℏt
e

imx2

2ℏt

{
φ

(mx
ℏt

)
, t →−∞

φ
(−mx

ℏt

)
ρ
(−mx

ℏt

)+φ(mx
ℏt

)
τ
(mx
ℏt

)
, t →+∞ (10.3)

where k = mx
ℏt .

• Interpret physically the result just found.

• Show that |ρ|2 +|τ|2 = 1 and give a physical interpretation of this result.

• What are the velocities of the reflected and transmitted waves? Are they the same?

• Does this violate energy conservation? Why?

Solution: We first want to explain the stationary phase approximation. As we want to apply
the limit t → ±∞, we see that the phase of the exponential term in the integral (10.2) is
rapidly oscillating. The main idea is that only terms contribute to the integral, where the
phase is stationary. So we want to expand the phase around the stationary point as a Taylor
series and then perform the integration.

Lets first consider the case t →−∞. We note, that here our solution of the Schrödinger equa-
tion only consits of the plane wave of the free particle Ψk = eikx . The Integral (10.2) then
becomes

ψ(x, t ) =
ˆ
φ(k)e

i
(
kx−ℏk2

2m t
)

dk . (10.4)

We can now try to find the stationary point of the phase by

dϕ

dk

∣∣∣∣
k0

!= 0 ⇒ dϕ

dk
= x − ℏk0t

2m
⇒ k0 = mx

ℏt
. (10.5)
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Now we can expand the phase around k0 which yields

ϕ(k) =
(

k0x − ℏk2
0 t

2m

)
− 1

2

ℏt

m
(k −k0)2

= mx2

2ℏt
− 1

2

ℏt

m
(k −k0)2. (10.6)

When t is relatively large, even a small difference (k − k0) will generate oscillations within
the integral, leading to cancellations. We can therefore extend the integral limits to ±∞. We
can also drag φ(k) out of the integral by using the fact, that the term inside the integral is
practically zero everywhere except at k = k0. Equation (10.4) the becomes

ψ(x, t ) =
ˆ
φ(k)ei( mx2

2ℏt − 1
2
ℏt
m (k−k0)2) dk

= ei mx2

2ℏt φ(k0)

ˆ
e−

i
2
ℏt
m (k−k0)2) dk . (10.7)

The integral boils down to a Gaussian integral for which we know the solution

ˆ
e−ax2

dx =
√
π

a
. (10.8)

ψ(x, t ) = ei mx2

2ℏt φ
(mx

ℏt

)√2πm

iℏt
. (10.9)

Now let us consider the second case t →+∞. Here, our solution of the Schrödinger equation
consists only of the reflected and transmitted wave. Therefore the integral (10.2) is

ψ(x, t ) =
ˆ
φ(k)ρ(k)e

i
(
−kx−ℏk2

2m t
)

dk +
ˆ
φ(k)τ(k)e

i
(
kx−ℏk2

2m t
)

dk . (10.10)

For the first part, the stationary point of the phase is at k ′
0 = −mx

ℏt , whereas for the second
part we have the same situation as in (10.5). This leads to

ψ(x, t ) = ei mx2

2ℏt

(
φ(k ′

0)ρ(k ′
0)

ˆ
e−

i
2
ℏt
m (k−k0)2

dk +φ(k0)τ(k0)

ˆ
e−

i
2
ℏt
m (k−k0)2

dk

)
= ei mx2

2ℏt

√
2πm

iℏt

(
φ

(
−mx

ℏt

)
ρ
(
−mx

ℏt

)
+φ

(mx

ℏt

)
τ
(mx

ℏt

))
. (10.11)

We can show that |ρ|2+|τ|2 = 1 by using the fact, that for this time independent problem the
total number of particles in the potential region

aˆ
−a

Ψ∗Ψdx = const. (10.12)

The continuity equation ϱ̇+∇⃗∇∇ ··· j = 0 tells us now, that the probability current entering the
potential must leave the potential region again. This means that

j (x =−a)
!= j (x = a). (10.13)
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The probability current is defined as j = ℏ
m Im(Ψ∗∇⃗∇∇Ψ). For a plane wave eikx this is

jx = ℏ
m

Im(A∗e−ikx∂x(Aeikx)) = ℏk

m
|A|2. (10.14)

For the wave in the region x <−a :Ψk1 = eikx +ρ(k)e−ikx the total probability current enter-
ing the potential region is

j (x =−a) = ℏk

m
(|eikx |2 −|ρ(k)e−ikx |2) = 1−|ρ|2. (10.15)

The other wave x > a :Ψk2 = τ(k)e−ikx the current leaving the potential region is

j (x = a) = |τe−ikx |2 = |τ|2. (10.16)

Therefore we can conclude

1−|ρ|2 = |τ|2 ⇒ |ρ|2 +|τ|2 = 1. (10.17)
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10.2 S-matrix and transfer matrix

Compute the transfer matrix M and the scattering matrix S for the potential given by:

V (x) =
{

0, if |x| > a

V0, if |x| < a
. (10.18)

Describe their relation and properties.

Solution: For this rectangular potential we can write the solutions of the Schrödinger equa-
tion as

Ψ(x) =


A1eikx + A′

1e−ikx x <−a

A2eik ′x + A′
2e−ik ′x −a ≤ x ≤ a

A3eikx + A′
3e−ikx x > a

. (10.19)

Without loss of generality we can assume, that an incoming wave is coming from negative
infinity (A′

3 = 0) with an amplitude A1 = 1.

Now we impose a C 1 condition at the boundary of the potential:
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11 Scattering continued

11.1 Differential Cross Section

The differential cross-section dσ
dΩ is defined as the number of particles per unit time scattered

into the solid angle, divided by the incoming particle flux and it quantifies the interaction
of the incident flux of particle with the target. However, the differential cross-section can be
also seen as the transition rate R(i → f ) = 2π

ℏ |T f i |2δ(E f −Ei ) integrated on the density of final

states n(E f ) = mk f

ℏ2 dΩ, divided by the incoming flux jin and solid angle. Show the derivation

of dσ
dΩ in this case.

Solution: Using the hints given in the task the differential cross section can be expressed
as

dσ

dΩ
= 1

jin dΩ

ˆ
R(i → f )n(E f )dE f

= 1

jin dΩ

ˆ
2π

ℏ
|T f i |2δ(E f −Ei )n(E f )dE f

= 1

jin�
�dΩ

2π

ℏ
|T f i |2n(Ei ), n(Ei ) = mki

ℏ2 ��dΩ

= 2π

ℏ

(ℏki

m

)−1 mki

ℏ2
|T f i |2 = 2π

m2

ℏ4
|T f i |2. (11.1)

11.2 Scattering amplitude of the spherically symmetric potential

Consider the following symmetrical potential V (r ):

V (r ) =
{

0 if r > a

V0 if r < a
. (11.2)

Prove that the scattering amplitude f (k ,k ′′′) in the Born approximation is given by

f (k ,k ′′′) =−2m

ℏ2

V0a3

(qa)2

[
sin

(
qa

)
qa

−cos
(
qa

)]
, (11.3)

where q = |k −k ′′′|.

Solution: The scattering amplitude is given in the lecture as

f (k ,k ′′′) =− m

2πℏ2

〈
k ′|V |Ψ(k)

+
〉

. (11.4)

In the first Born approximation we can write
∣∣∣Ψ(k)

+
〉

as∣∣∣Ψ(k)
+

〉
≈ (1+GV + (GV )2 + . . .) |Ψ0〉 ≈ |Ψ0〉 . (11.5)
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The input wave is assumed to be a plane wave 〈x|Ψ0〉 = eik ·x which leads to

f (k ,k ′′′) =− m

2πℏ2

ˆ
d3x

〈
k ′|x〉〈x|V |Ψ0〉 =− m

2πℏ2

ˆ
d3x e−ik ′′′·xV (x)eik ·x

=− m

2πℏ2

ˆ
d3r eiq ·x V0Θ(a − r ), q = k −k ′′′ ∝ êz

=− m

2πℏ2

2πˆ

0

dϕ

aˆ

0

dr r 2

πˆ

0

dϑsin(ϑ)ei|q |r cosϑV0

=+m

ℏ2
V0

aˆ

0

dr r 2

−1ˆ

1

dcos(ϑ)eiqr cos(ϑ)

= m

ℏ2
V0

aˆ

0

dr
r

q

1

i

(
e−iqr −eiqr )︸ ︷︷ ︸

2sin
(−qr

) =−m

ℏ2
V0

aˆ

0

dr 2r sin
(
qr

)

=−2mV0

ℏ2q

[
−cos

(
qr

) r

q

]a

0
+

aˆ

0

1

q
cos

(
qr

)
dr


=−2mV0

ℏ2q

(
−a

q
cos

(
aq

)+ 1

q2
sin

(
aq

))
=−2m

ℏ2

V0a3

(qa)2

[
sin

(
qa

)
qa

−cos
(
qa

)]
. (11.6)

11.3 Radius of the 40Ca nucleus

Estimate the radius of the 40Ca nucleus from the data in Figure 1 (see below) and compare
to that expected from the empirical value ≈ 1.4A1/3fm, where A is the nuclear mass number.
Check the validity of using the first-order Born approximation for these data.

Solution: We start this task by noting that the differential cross-section dσ
dΩ is connected to

the scattering amplitude f (k ,k ′′′) by

dσ

dΩ
= | f (k ,k ′′′)|2. (11.7)

Here we can see, that the differential cross section vanishes when f (k ,k ′′′) is zero. In theory
we could observe, that the cross section will be zero for certain angles ϑ, however, due to
diffraction we only observe minima in figure 1. As a first approximation we can model a
nucleus by a constant potential for r < R and zero elsewhere. This is the same potential as
already discussed in the previous task. We can use the results to find the zero value of the
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Fig. 1: Data on elastic scattering of protons from the nuclei of four different isotopes of calcium. The
angles at which the cross sections show minima decrease consistently with increasing neutron
number. Therefore, the radius of the calcium nucleus increases as more neutrons are added,
as one expects. From L. Ray et al.,Phys. Rev (1980)

corresponding scattering amplitude f (k ,k ′′′)

f (k ,k ′) (11.6)= −2m

ℏ2

V0R3

(qR)2

[
sin

(
qR

)
qR

−cos
(
qR

)] != 0

⇒ 1

Rq
sin

(
Rq

)−cos
(
Rq

)= 0

⇒ x = tan(x), x = R ·q. (11.8)

This is a transcendental equation which can only be solved numerically or graphically. We
consider Wolfram|Alpha which gives the following results:

x1 = 4.493, x2 = 7.725, x3 = 10.904. (11.9)

We now try to find an expression for q . We assume elastic scattering as state in 1, which
means |k | = |k ′′′|. Using the cosine triangle theorem we find

q = |q | =
√

k2 +k ′2 −2kk ′ cos(ϑ) = k
√

2−2cos(ϑ) = 2k sin(ϑ/2). (11.10)

The term k can expressed in terms of proton energy as

k =
√

2mp E

ℏ2
= 6,187 ·1016 1

m
. (11.11)

We can use our results to calculate R

R = x

q
= x

2k sin(ϑ/2)
. (11.12)

The results of this calculation are summarized in table 1. We can compare this result with
the empirical value

R ≈ 1.4 · (40)1/3 = 4,79fm. (11.13)

We can see, that the Born approximation in first order is indeed valid.
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Table 1: Estimated radius of the 40Ca nucleus from the data of figure 1.

ϑ R in fm

x1 7,8° 5.34
x2 14,4° 4.98
x3 20,8° 4.88

11.4 Quantum Scattering Cross Section

Consider an arbitrary but localised potential V (x). Recall from your lecture notes, that the
formula for the scattering amplitude f (ϑ,ϕ) = − m

2πℏ2

〈
k ′|T |k〉

. The task is now to compute
the scattering cross sections from these scattering amplitudes, by employing the “Born se-
ries” up to different orders. In the literature, this process is referred to as the “Born approxi-
mation”.

1. Find out an expression for f (ϑ,ϕ) in the first order Born approximation. Integrate the
resulting expression of f 2 with respect to dΩ over all solid angle dΩ, to find out the
cross section σ. Express your answer as an integral expression.

2. Move over now to the second order Born approximation. Once again, find the expres-
sion of f (ϑ,ϕ). Find out an expression for σ using the Optical theorem.

Compare your answers. Indication: In both cases, your final answer should be:

σ= m2

πℏ2

Ï
d3x d3x ′V (x)V (x ′)

sin2(k|x −x ′′′|)
k2|x −x ′′′|2 . (11.14)

Solution: In order to compute the total scattering cross-section we first need to evaluate
the scattering amplitude f (k,k ′). As given in the task we have:

f (k,k ′) = m

2πℏ2

〈
k|T |k ′〉= m

2πℏ2

〈
k|V |k ′〉 . (11.15)

The last equality only holds for first order Born approximation

T =V +V
1

E −H0 + iε
V + . . . . (11.16)

with T ≈ V . So then we obtain the cross-section by integration the square of the scattering
ampltiude over the solid angle dΩk ′

σk =
ˆ

dΩk ′ | f (k,k ′)|2 =
( m

2πℏ2

)2
ˆ

dΩk ′
〈

k ′|V |k〉〈
k|V |k ′〉 (11.17)

=
( m

2πℏ2

)2
ˆ

dΩk ′

Ï
d3x d3x ′ 〈k ′|V |x〉〈x|k〉〈k|V |x ′〉〈

x ′|k ′〉
=

( m

2πℏ2

)2
ˆ

dΩk ′

Ï
d3x d3x ′V (x)V (x ′)

〈
k|x ′〉〈x|k〉〈k ′|x〉〈

x ′|k ′〉
=

( m

2πℏ2

)2
Ï

d3x d3x ′V (x)V (x ′)eik ·(x−x ′′′)
ˆ

dΩk ′ eik ′′′·(x ′′′−x)︸ ︷︷ ︸
4π

sin
(
k|x −x ′′′|)

k|x −x ′′′|

.
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This is the cross-section for a given k . So in order to obtain the total cross-section we inte-
grate over all possible k :

σtotal =
1

4π

ˆ
d3kσk = m2

π2ℏ4

Ï
d3x d3x ′V (x)V (x ′)

sin2(k|x −x ′′′|)
k2|x −x ′′′|2 . (11.18)

For the second part we use the optical theorem to compute the total cross section:

σtotal =
4π

k
Im f (k,k). (11.19)

This is the special case k = k ′′′ of forward scattering.

We can see that the first order Born approximation will give a zero, because Im(〈k|V |k〉) is
zero. For the second order instead we will have

σtotal =
2m

ℏ2k
Im

〈
k|V 1

E −Ho + iε
|k

〉
= 2m

ℏ2k
Im

ˆ
d3x

ˆ
d3x ′ 〈k|V |x〉

〈
x| 1

E −Ho + iε
|x ′

〉
︸ ︷︷ ︸

∼G+(x ,x ′′′)

〈
x ′|k〉

= 2m

ℏ2k
Im

ˆ
d3x

ˆ
d3x ′ eik ·(x−x ′′′)V (x)V (x ′)

2m

ℏ2
G+(x , x ′′′)︸ ︷︷ ︸

− 1

4π

eik|x−x ′′′|

|x −x ′′′|
= m2

πℏ4

ˆ
d3x

ˆ
d3x ′V (x)V (x ′)

sin2(k|x −x ′′′|)
k2|x −x ′′′|2 .
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12 Scattering continued

12.1 Born approximation

Calculate the differential cross sections in the Born approximation for scattering for the fol-
lowing potentials:

V1(r ) =V0e−a2r 2
, V2(r ) =V0e−ar . (12.1)

Solution: In order to find the differential cross sections in the Born approximation we de-
termine the scattering amplitude f (k,k ′)

f (k ,k ′′′) =− m

2πℏ2

〈
k ′|T |k〉≈− m

2πℏ2

〈
k ′|V |k〉

=− m

2πℏ2

ˆ
d3x e−ik ′′′·xV (r )eik ·x =− m

2πℏ2

ˆ
d3x eiq ·xV (r )

=−m

ℏ2

∞̂

0

dr

−1ˆ

1

r 2 d(cosϑ)eiq r cosϑ

︸ ︷︷ ︸
= 1

iqr

(
e−iqr −eiqr )

V (r )

=+ 2m

qℏ2

∞̂

0

r sin
(
qr

)
V (r )dr . (12.2)

Now we can insert the potentials V1(r ) and V2(r ). For the first integral we use Wolfram|Alpha
and find:

f (k ,k ′′′) = 2mV0

qℏ2

∞̂

0

r sin
(
qr

)
e−a2r 2

dr

︸ ︷︷ ︸p
πq exp

(−q2/(4a2)
)

4a3

= mV0

2ℏ2a3

p
πexp

(
− q2

4a2

)
. (12.3)

The second integral can be computed rather straightforwardly. Lets work out the integral
part first:

∞̂

0

r sin
(
qr

)
e−ar dr = Im

 ∞̂

0

r e(iq−a)r dr


= Im

[ 1

iq −a
r e(iq−a)r

∣∣∣∣∞
0︸ ︷︷ ︸

=0

−
∞̂

0

1

iq −a
e(iq−a)r dr

]

= Im

[
1

(a − iq)2

(−e(iq−a)r ) ∣∣∣∣∞
0

]
= Im

[
(a + iq)2

(a2 +q2)2

]
= Im

[
a2 −q2 +2aqi

(a2 +q2)2

]
= 2aq

(a2 +q2)2
. (12.4)
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This leads to the scattering amplitude

f (k ,k ′′′) = 2m

ℏ2

V0

q

∞̂

0

r sin
(
qr

)
e−ar dr = 4maV0

ℏ2

1

(a2 +q2)2
. (12.5)

Now we can find the cross sections by using

dσ

dΩ
= | f (k ,k ′′′)|2 =


m2V 2

0

4ℏ4a6
πexp

(
− q2

2a2

)
V1(r )

16m2a2V 2
0

ℏ4

1

(a2 +q2)4
V2(r )

. (12.6)

12.2 Scattering Phase

Determine the scattering phases for scattering at the potential V = A/r 2 and calculate the
differential cross section for 0 ≤ µA/ℏ2 ≪ 1, where µ is the reduced mass appearing in the
Schrödinger equation.
Hint: In the radial Schrödinger equation for Ul = r fl set ul =

p
r gl . The differential equation

for gl should be familiar to you. You will probably meet a sum over Legendre polynomials.
This can be simplified with the identity

∞∑
l=0

Pl (cosθ) = 1

2sin(θ/2)
. (12.7)

Solution: For spherically symmetric potentials we can make the ansatzΨ(r,ϑ,ϕ) = R(r )Ylm(ϑ,ϕ).
We can write the Schrödinger equation in spherical coordinates as

EΨ(r,ϑ,ϕ) =
[
− ℏ2

2m
∆+V (r )

]
Ψ(r,ϑ,ϕ). (12.8)

We can express the Laplace operator as

∆= 1

r 2

[
∂

∂r

(
r 2 ∂

∂r
−L2

)]
, with L2Yl m(ϑ,ϕ) = l (l +1)Ylm(ϑ,ϕ). (12.9)

Therefore we obtain (the spherical harmonics can be divided on both sides)

ER(r ) =
[
− ℏ2

2m

1

r 2

[
∂

∂r

(
r 2 ∂

∂r
− l (l +1)

)]
+V (r )

]
R(r )

⇒ 1

r 2

d

dr

(
r 2 dR

dr

)
− l (l +1)

r 2
R(r )+ 2m

ℏ2
[E −V (r )]R(r ) = 0. (12.10)

Now using ul = r R and k2 = 2m
ℏ2 E we find the radial Schrödinger equation

d2ul

dr 2
+

(
k2 − 2m

ℏ2
V − l (l +1)

r 2

)
ul = 0. (12.11)
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Now we use the hint given in the task ul =
p

r gl and insert the potential V = A/r 2

d2(
p

r gl )

dr 2
+

(
k2 − 2m

ℏ2
V − l (l +1)

r 2

)p
r gl = 0. (12.12)

Using

1p
r

d2(
p

r gl )

dr 2
=− gl

4r 2
+ 1

r

dgl

dr
+ d2gl

dr 2
(12.13)

we can find

d2gl

dr 2
+ 1

r

dgl

dr
+

(
k2 − 1

4r 2
− 2m A

ℏ2r 2
− l (l +1)

r 2

)
gl = 0

r 2 d2gl

dr 2
+ r

dgl

dr
+

(
r 2k2 −

(
1

4
+ 2m A

ℏ
+ l (l +1)

))
gl = 0. (12.14)

This result looks rather similar to the Bessel differential equation

x2 d2 f

dx2
+x

d f

dx
+ (x2 −a2) f = 0. (12.15)

12.3 Ensembles of 1
2 spin systems

1. Consider a pure ensemble of identically prepared spin 1
2 systems. Suppose the expec-

tation values 〈Sx〉 and 〈Sz〉 and the sign of
〈

Sy
〉

are known. Show how we may deter-
mine the state vector. Why is it unnecessary to know the magnitude of

〈
Sy

〉
?

2. Consider a mixed ensemble of spin 1
2 systems. Suppose the ensemble averages [Sx], [Sy ]

and [Sz] are all known. Show how we may construct the 2×2 density matrix that char-
acterizes the ensemble.

1.) Solution: A pure ensemble consists only of spin 1/2 systems that are in the same state.
A generic state |α〉 can be described using two angles α,β

|α〉 = cos
β

2
|+〉+eiα sin

β

2
|−〉 . (12.16)

We can now look at the expectation value 〈Sx〉 using the Pauli two-component formalism

〈Sx〉 = 〈α|Sx |α〉 =
(
〈+|cos

β

2
+〈−|e−iα sin

β

2

)
Sx

(
cos

β

2
|+〉+eiα sin

β

2
|−〉

)
= ℏ

2

(
cos β2 e−iα sin β

2

)
σx

(
cos β2

eiα sin β
2

)

= ℏ
2

(
cos β2 e−iα sin β

2

)(0 1
1 0

)(
cos β2

eiα sin β
2

)

= ℏ
2

(
eiα+e−iα)︸ ︷︷ ︸

2cosα

cos
β

2
sin

β

2︸ ︷︷ ︸
1
2 sin(β)

= ℏ
2

cosαsinβ. (12.17)
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Analogously we find

〈
Sy

〉= ℏ
2

(
cos β2 e−iα sin β

2

)
σy

(
cos β2

eiα sin β
2

)

= ℏ
2

(
cos β2 e−iα sin β

2

)(0 −i
i 0

)(
cos β2

eiα sin β
2

)

= ℏ
2

i
(−eiα+e−iα)︸ ︷︷ ︸

2sinα

cos
β

2
sin

β

2︸ ︷︷ ︸
1
2 sin(β)

= ℏ
2

sinαsinβ. (12.18)

〈Sz〉 = ℏ
2

(
cos β2 e−iα sin β

2

)
σz

(
cos β2

eiα sin β
2

)

= ℏ
2

(
cos β2 e−iα sin β

2

)( 1 0
−1 0

)(
cos β2

eiα sin β
2

)

= ℏ
2

(
cos2 β

2
− sin2 β

2

)
= ℏ

2
cosβ. (12.19)

From the expectation value 〈Sz〉 we can directly read off

β= 2

ℏ
arccos〈Sz〉 . (12.20)

Now we can combine 〈Sx〉 and 〈Sz〉 to find

cos2α= cos2αsin2β

1−cos2β
= 4

ℏ2

〈Sx〉2

1− 4
ℏ2 〈Sz〉2

⇒α= arccos

±
√√√√ 〈Sx〉2

ℏ2

4 −〈Sz〉2

. (12.21)

There is a sign ambiguity between α and π−α which can be resolved by the sign of
〈

Sy
〉

.

2.) Solution: We can relate the average expectation values [Si ] to the density operator
by

[Si ] = Tr(ρSi ). (12.22)

Therefore we can calculate the average expectation values for a generic density matrix to find
its components

[Sx] = ℏ
2

Tr

[(
a b
c d

)(
0 1
1 0

)]
= ℏ

2
Tr

(
b a
d c

)
= ℏ

2
(b + c)

[Sy ] = ℏ
2

Tr

[(
a b
c d

)(
0 −i
i 0

)]
= iℏ

2
Tr

(
b −a
d −c

)
= iℏ

2
(b − c) (12.23)

[Sz] = ℏ
2

Tr

[(
a b
c d

)(
1 0
0 −1

)]
= ℏ

2
Tr

(
a −b
c −d

)
= ℏ

2
(a −d).
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We also demand, that the trace of the density matrix is one, therefore a +d = 1.

Using these conditions we can easily determine a and d

[Sz] = ℏ
2

(2a −1) = ℏ
2

(1−2d)

⇒ a = 1

2

(
2

ℏ
[Sz]+1

)
d =−1

2

(
2

ℏ
[Sz]−1

)
. (12.24)

Combining [Sx] and [Sy ] we can find

b = 1

ℏ
(
[Sx]− i[Sy ]

)
c = 1

ℏ
(
[Sx]+ i[Sy ]

)
. (12.25)

12.4 Mixed Ensembles

The density matrix is defined as

ρ =∑
i

wi

∣∣∣αi
〉〈

αi
∣∣∣ . (12.26)

If wi = 1 for a given i and 0 elsewhere, then the ensmble is said to be a pure ensemble.
Consider a mixed ensemble of spin 1

2 systems, containing 75 % of S+
z systems and 25 % S+

x .
Calculate the resulting ρ and the ensemble average expectation value [S]. Consider now that
the Sz systems are replaced by systems with S · n̂(+), where n̂ = cosθ ŷ +sinθẑ . Calculate the
ensemble average values now.

Solution: The states of the two systems of the ensemble are∣∣α1〉= |+〉 ,
∣∣α2〉= 1p

2
(|+〉+ |−〉). (12.27)

Using (12.26) we can calculate the density matrix as

ρ = 3

4
|+〉〈+|+ 1

4

(
1p
2

(|+〉+ |−〉)
)(

1p
2

(〈+|+〈−|)
)

= 3

4
|+〉〈+|+ 1

8
(|+〉〈+|+ |+〉〈−|+ |+〉〈−|+ |−〉〈−|)

= 3

4

(
1 0
0 0

)
+ 1

8

(
1 1
1 1

)
= 1

8

(
7 1
1 1

)
. (12.28)

Now we want to compute the ensemble average expectation values. We can use [Si ] = Tr(ρSi )

[Sx] = ℏ
2

1

8
Tr

[(
7 1
1 1

)(
0 1
1 0

)]
= ℏ

16
Tr

(
1 7
1 1

)
= ℏ

8

[Sy ] = ℏ
2

1

8
Tr

[(
7 1
1 1

)(
0 −i
i 0

)]
= iℏ

16
Tr

(
1 −7
1 −1

)
= 0 (12.29)

[Sz] = ℏ
2

1

8
Tr

[(
7 1
1 1

)(
1 0
0 −1

)]
= ℏ

16
Tr

(
7 −1
1 −1

)
= 3ℏ

8
.
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Therefore we can conclude that [S] is

[S] =
[Sx]

[Sy ]
[Sz]

= ℏ
8

1
0
3

. (12.30)

Now we consider the case

S+
z → S · n̂(+) = S+

y cosθ+S+
z sinθ. (12.31)

We can write this new state in the Sz basis as follows using
∣∣∣S+

y

〉
= 1p

2
(|+〉+ i |−〉)

S+
y cosθ+S+

z sinθ = cosθp
2

(
1
i

)
+

(
sinθ

0

)
=

(cosθp
2
+ sinθ

icosθp
2

)
. (12.32)

We can now use the formula for the average expectation value

[Sx] =∑
i

wi 〈Sx〉i =
3

4
〈S · n̂|Sx |S · n̂〉+ 1

4

〈
S+

x |Sx |S+
x

〉︸ ︷︷ ︸
ℏ/2

= 3

4

(
cosθp

2
+ sinθ −icosθp

2

)(0 1
1 0

)(cosθp
2
+ sinθ

icosθp
2

)
︸ ︷︷ ︸

=0

+ℏ
8
= ℏ

8
. (12.33)

[Sy ] = 3i

4

ℏ
2

(
cosθp

2
+ sinθ −icosθp

2

)(0 −1
1 0

)(cosθp
2
+ sinθ

icosθp
2

)
+ 1

4

〈
S+

x |Sy |S+
x

〉︸ ︷︷ ︸
=0

= 3ℏ
8

cosθ
(
cosθ+p

2sinθ
)

(12.34)

[Sz] = 3

4

ℏ
2

(
cosθp

2
+ sinθ −icosθp

2

)(1 0
0 −1

)(cosθp
2
+ sinθ

icosθp
2

)
+ 1

4

〈
S+

x |Sz |S+
x

〉︸ ︷︷ ︸
=0

= 3ℏ
8

((
cosθp

2
+ sinθ

)2

− cos2θ

2

)
= 3ℏ

8
sinθ

(
sinθ+p

2cosθ
)
. (12.35)

⇒ [S] =
[Sx]

[Sy ]
[Sz]

= ℏ
8

 1
cosθ

(
cosθ+p

2sinθ
)

sinθ
(
sinθ+p

2cosθ
)
. (12.36)
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12.5 Density matrix and maximum entropy (Bonus)

The density matrix of a completely random ensemble is of the form

ρ = 1

N

1 0 0

0 . . . 0

0 0 1

 (12.37)

in any representation. This is due to the fact that all the base states with respect to which the
density matrix is written are equally populated. The Von Neumann entropyσ can be defined
as

σ=−Tr(ρ lnρ) =−
N∑

k=1
ρkk lnρkk (12.38)

where the last equality follows if we use the basis in which ρ is diagonal.

• Prove that for a completely random ensemble σ= ln N .

• Prove that, subject to the normalization condition Trρ = 1, the maximum value for σ is
σmax = ln N .
Hint: use the method of Lagrange multipliers to impose the constraint on the trace of
ρ.

Solution: First we want to calculate the entropy σ for a completely random ensemble. Us-
ing the form (12.37) we find

σ=−
N∑

k=1
ρkk︸︷︷︸
1/N

ln ρkk︸︷︷︸
1/N

=−
N∑

k=1

1

N︸ ︷︷ ︸
=1

ln
1

N
=− ln

1

N
= ln N . (12.39)

The second proof requires a bit more work. We now want to maximize σ, keeping the nor-
malization of ρ. As given in the hint we apply the method of Lagrange multipliers:

σ̃(ρ) =σ(ρ)+γ
[(∑

k
ρkk

)
−1

]
=∑

k
ρkk lnρkk +γ

[(∑
k
ρkk

)
−1

]
, (12.40)

where γ is the Lagrange multiplier. Now we can impose δσ̃(ρ) = 0

δσ̃(ρ) =∑
k

(
δρkk lnρkk +ρkk

1

ρkk
δρkk

)
+γ∑

k
δρkk

=∑
k
δρkk (lnρkk +1+γ) = 0. (12.41)

This condition is satisfied, if for any δρkk

lnρkk +1+γ= 0 ⇒ ρkk = e−(1+γ) (12.42)

holds. We can now fix the value of γ by using the normalization constraint:

N∑
k=1

e−(γ+1) = 1 ⇒ γ=−
(
ln

1

N
+1

)
. (12.43)

With this we find that the entropy is maximum when the density matrix is a random ensem-
ble with ρkk = 1/N .
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13 Many body systems

13.1 Identical particle time-evolution

Explain why an initially completely symmetric or anti-symmetric wave function describing
a system of identical particles remains symmetric or anti-symmetric at later times.

Solution: If the initial state vector is symmetric or anti-symmetric it fulfills the following
relation:

Pi j
∣∣ψ±(t0)

〉=± ∣∣ψ±(t0)
〉

, (13.1)

where Pi j is the transposition operator. For identical particles the Hamiltonian is com-
pletely symmetric and therefore commutes with all possible permutations. In particular
this implies, that the transposition operator commutes also with the time evolution oper-
ator U (t , t0) = exp(−i/ℏH0(t − t0)) such that

Pi j
∣∣ψ±(t )

〉= Pi jU (t , t0)
∣∣ψ±(t0)

〉
=U (t , t0)Pi j

∣∣ψ±(t0)
〉=±U (t , t0)

∣∣ψ±(t0)
〉=± ∣∣ψ±(t )

〉
. (13.2)

This proves that
∣∣ψ±(t )

〉
inherits the anti-symmetry from

∣∣ψ±(t0)
〉

.

13.2 Polarization states

We model the phase of a photon as a two-level system (q-bit) whose Hilbert space is spanned
by a orthonormal basis of two states: |1〉 and |2〉. They correspond, for instance, to two or-
thogonal linear polarizations with observable polarization operators:

P1 = |1〉〈1| , P2 = |2〉〈2| . (13.3)

1. Provide an example of a normalized pure state for which the expectation value of both
P1 and P2 equals 1/2, and a two-by-two matrix representation of the corresponding
density-matrix operator in the given basis.

2. Find the density matrix for the most general normalized pure state with the properties
specified in the previous task.

3. The state with partial polarization has the general representation

ρ = 1

2
(1+ξ ·σ), (13.4)

where 1 is the 2×2 identity matrix, σ= (σ1,σ2,σ3) is the vector of Pauli matrices, and
ξ ∈ R3. For which ξ is this state a pure state?

4. For which ξ is 〈P1〉 = 1? For which ξ is 〈P2〉 = 1?

5. Define the states with circular polarizations:

|±〉 = 1

2
(|1〉± i |2〉). (13.5)

For which ξ is 〈P+〉 = 1? For which ξ is 〈P−〉 = 1?
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Solution: The generic wavefunction for a two-level system can be written as∣∣ψ〉= c1 |1〉+ c2 |2〉 with |c1|2 +|c2|2 = 1. (13.6)

The density operator of this system looks like

ρ =∑
i

wi |αi 〉〈αi | =
∣∣ψ〉〈

ψ
∣∣

= (c1 |1〉+ c2 |2〉)(〈1|c∗1 +〈2|c∗2 )

= |c1|2 |1〉〈1|+ c2c∗1 |2〉〈1|+ c∗2 c1 |1〉〈2|+ |c2|2 |2〉〈2|

=
(|c1|2 c∗2 c1

c2c∗1 |c2|2
)
. (13.7)

The expectation values of P1 and P2 can be calculated by using their matrix representation

P1 = |1〉〈1| =
(
1 0
0 0

)
, P2 = |2〉〈2| =

(
0 0
0 1

)
. (13.8)

We can calculate the expectation values using Tr(ρ ·Pi )

〈P1〉 = Tr(ρP1) = Tr

(|c1|2 0
0 0

)
= |c1|2 = 1

2
⇒ c1 = 1p

2
eiα1 (13.9)

〈P2〉 = Tr(ρP2) = Tr

(
0 0
0 |c2|2

)
= |c2|2 = 1

2
⇒ c2 = 1p

2
eiα2 . (13.10)

The most general normalized pure state looks like

ρ = 1

2

(
1 ei(α1−α2)

ei(α2−α1) 1

)
. (13.11)

In order to determine the vectors ξ for which the state (13.4) is a pure state we simply need
to demand that ρ = ρ2

ρ2 = 1

4
(1+ξ ·σ)(1+ξ ·σ) = 1

4
(1+���2ξ ·σ+ξ ·σξ ·σ)

!= 1

2
(1+���ξ ·σ). (13.12)

We therefore find the condition

1= ξ ·σξ ·σ= (ξ1σ1 +ξ2σ2 +ξ3σ3)2

=
(

ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3

)(
ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3

)
=

(
ξ2

1 +ξ3
2 +ξ2

3 0
0 ξ2

1 +ξ3
2 +ξ2

3

)
. (13.13)

We find the condition ξ2
1 +ξ3

2 +ξ2
3 = 1 meaning that ξ must be normalized.

In order to find for which ξ the expectation value of P1 or P2 is one, we just take the trace

〈P1〉 = Tr(ρP1) = 1

2
(1+ξ3)

!= 1 ⇒ ξ3 = 1 (13.14)

〈P2〉 = Tr(ρP2) = 1

2
(1−ξ3)

!= 1 ⇒ ξ3 =−1. (13.15)
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In the last task we want to find all vectors ξ for which 〈P±〉 = 1 holds. First we determine the
matrix representations of P±

|±〉〈±| = 1

2
(|1〉± i |2〉)(〈1|∓ i〈2|)

= 1

2
(|1〉〈1|± i |2〉〈1|∓ i |1〉〈2|+ |2〉〈2|)

P± = 1

2

(
1 ∓i
±i 1

)
. (13.16)

Now we calculate the expectation value

〈P±〉 = Tr(ρP±) = 1

4
Tr

(
1+ξ3 ξ1 − iξ2

ξ1 + iξ2 1−ξ3

)(
1 ∓i
±i 1

)
= 1

4
Tr

(
1+ξ3 ± iξ1 ±x2 . . .

. . . ∓iξ1 ±ξ2 +1−ξ3

)
= 1

2
(1±ξ2)

!= 1

⇒ ξ2 =±1. (13.17)

13.3 Identical particles addition of angular momentum

It is well known that if we have 2 non-identical spin 1 particles with no orbital angular mo-
mentum, then we can have j = 2,1,0. Discuss what happens if the particles now are identi-
cal.

Solution: For two 2 particles we can find the states of total angular momentum by using
the Clebsch-Gordan coefficients already calculated in section 5.3. We print again the results:

m = 0 j = 2 j = 1 j = 0

m1 = 1,m2 =−1 1/
p

6 1/
p

2 1/
p

3
m1 = 0,m2 = 0

p
2/
p

3 0 −1/
p

3
m1 =−1,m2 = 1 1/

p
6 −1/

p
2 1/

p
3

m = 1 j = 2 j = 1

m1 = 1,m2 = 0 1/
p

2 1/
p

2
m1 = 0,m2 = 1 1/

p
2 −1/

p
2

Because of the spin statistic theorem, spin 1 particles are considered to be bosons. Therefore
their wavefunction must be symmetric under particle exchange j1z ↔ j2z . So the states with
j = 1 will not survive, as they are antisymmetric unter the exchange, e. g.

1p
2

(|1,0〉− |0,1〉) =− 1p
2

(|0,1〉− |1,0〉). (13.18)
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