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First Exercise sheet Particles and Fields

1 First Exercise sheet

Exercise 1: Use the relation ℏc ≈ 197MeVfm valid in SI units to compute your body height
in inverse eV for those units where ℏ= 1 = c.

Solution: Because of 1MeV = 106 eV and 1fm = 10−15 m, the product ℏc can be written
as

ℏc = 1.97 ·109 ·10−15 eVm ≡ 1.

⇒ 1m = 0,5 ·107 1

eV
. (1.1)

For a bodyheight of 1,93m this this leads to a result of 0,98 · 107 1
eV . The natural units are

actually very useful, because they relate all SI units with each other. Let [L] be the dimension
of length, [T] the dimension of time and [M] the dimension of mass. Then we see that

[c] = 1 = [L] · [T ]−1 ⇒ [L] = [T ] = 1

eV
[ℏ] = 1 = [M ] · [L]2 · [T ]−1 ⇒ [M ] = [L]−1 = eV

Exercise 2: Show that the particular Lorentz transformation Λ discussed in the lecture,
corresponding to a boost along the x axis, can be written as exp(−ζK1), where

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , ζ= artanh(β) ⇒Λ=


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

 (1.2)

Convince yourself that a boost in ageneral direction given by the relative velocity vector β
can be written as exp(−ζ ·K ). Work out the relation between β and ζ as well as the form of
the matrices K2 and K3.

Solution: Lets use the TAYLOR series expansion to express the exponential function:

exp(−ζK1) =1+
∞∑

n=1

(−ζK1)n

n!

=1−ζK1 + 1

2
(ζK1)2 − 1

3!
(ζK1)3 + . . .

= [1+ 1

2
(ζK1)2 + 1

4!
(ζK1)4]− [ζK1 + 1

3!
(ζK1)3 + 1

5!
(ζK1)5]

= [1+ 1

2
ζ2 + 1

4!
ζ4]1− [ζ+ 1

3!
ζ3 + 1

5!
ζ5]K1. (1.3)

3



First Exercise sheet Particles and Fields

In the last step we used the idempotenz of (K1)2 = 1. The result of (1.3) can be compared
with the series expansion of cosh(x) and sinh(x):

cosh(x) = ex +e−x

2
= 1+ 1

2!
x2 + 1

4!
x4 + . . . (1.4)

sinh(x) = ex −e−x

2
= x + 1

3!
x3 + 1

5!
x5 + . . . . (1.5)

This results in

exp(−ζK1) = coshζ ·1− sinhζ ·K1. (1.6)

This result is compared to Λ. If we look at the upper left corner of the matrix we can see
that (

γ −γβ
−γβ γ

)
=

(
coshζ −sinhζ
−sinhζ coshζ

)
. (1.7)

By comparing the elements of both matrices we find

γ= coshζ, γβ= sinhζ ⇒β= tanhζ. (1.8)

The other two matrices K2 and K3 the describing matrices for a LORENTZ boost in y- and
z-direction, which can be written in the following way

y −direction K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , ⇒Λ=


γ 0 −γβ 0
0 1 0 0

−γβ 0 γ 0
0 0 0 1

 (1.9)

z −direction K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , ⇒Λ=


γ 0 0 −γβ
0 1 0 0
0 0 1 0

−γβ 0 0 γ

 . (1.10)

For a boost in a general direction v = (v1, v2, v3) ⇒ β= (β1,β2,β3) the rapidity ζ= (ζ1,ζ2,ζ3)
and the K-matrices K = (K1,K2,K3) also become vectors. In fact, the vector of rapidity ζ
points in β-direction. The vectors can be normalized

ζ̂= ζ

|ζ| = β̂= β

|β| |ζ̂| = artanh(|β̂|). (1.11)

The LORENTZ transformationΛ can now be written as

Λ= exp(−ζ ·K ) = exp

(
− ζ

|ζ|artanh(β)

)
. (1.12)
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First Exercise sheet Particles and Fields

Exercise 3: Verify that the matrixΛ given above satisfies the relation

gµν = gκλΛ
κ
µΛ

λ
ν (1.13)

where the metric is g = diag(1,−1,−1,−1).

Solution: Lets first solve the task by using the matrix notation of the LORENTZ transforma-
tion. Because of (ΛT )νµ =Λνµ the right hand side of (1.13) can be written as

(ΛT )κµ gκλΛ
λ
ν︸ ︷︷ ︸

Θκν

, (1.14)

whereΘκν can be expressed as a matrix multiplication

Θκν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 . (1.15)

Then the whole matrix multiplication can be performed by multiplying the transposed LORENTZ

transformation on the left toΘκν
γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

Θκν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

. (1.16)

Another way to show this relation is to perform the summation of the coefficients of the
LORENTZ transformation

gκλΛ
κ
µΛ

λ
ν = g00Λ

0
µΛ

0
ν+ g11Λ

1
µΛ

1
ν+ g22Λ

2
µΛ

2
ν+ g33Λ

3
µΛ

3
ν. (1.17)

The indicesµ,ν can be chosen freely (µ,ν= 0,1,2,3). The sums can be calculated seperatly:∑
00

= (Λ0
0)2 − (Λ1

0)2 = γ2 −γ2β2 = γ2(1−β2) = 1∑
01

=∑
02

=∑
03

= 0∑
11

=−1,
∑
11

=∑
12

=∑
13

= 0∑
22

=−1,
∑
21

=∑
22

=∑
23

= 0∑
33

=−1,
∑
31

=∑
32

=∑
33

= 0.

This actually results in gµν.
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Second Exercise sheet Particles and Fields

2 Second Exercise sheet

In general the Euler-Lagrange equations of motion for a generic action function S[Φ], given
by

S[Φ] =
ˆ

d4x L (Φ,∂µΦ). (2.1)

where L (Φ,∂µΦ): Lagrangian density which describes the field theory, are given by(
∂L

∂Φ

)
−∂µ

(
∂L

∂∂µΦ

)
= 0. (2.2)

HereΦ(xµ) =Φ(t , x) and ∂µ= ∂
∂xµ .

Exercise 3: Use the Euler-Lagrange equations to derive the equations of motion for

a) Maxwells electrodynamics,

L =−1

4
FµνFµν− JµAµ. (2.3)

b) The theory of a complex Klein-Gordon field,

L = (∂µφ
∗)(∂µφ)−m2φ∗φ, (2.4)

where φ = 1p
2

(φ1 + iφ2),φ1,2 ∈ R. Show that the equations of motion can also more

conventiently be obtained if φ and φ∗ are considered as independent fields.

c) Schrödinger theory,

L =ψ∗i∂tψ− 1

2m
(∇⃗∇∇ψ∗) · (∇⃗∇∇ψ)−V (x)ψ∗ψ. (2.5)

Use the same trick as in b.) and consider ψ and ψ∗ as independent.

a.) Solution: For the derivation of the equations of motion we use the general relation

∂∂αAβ

∂∂γAη
= δγαδηβ. (2.6)

Now we can write the Euler-Lagrange equations as

∂L

∂Aµ
= ∂µ ∂L

∂(∂µAν)
with Fµν = ∂µAν−∂νAµ. (2.7)

First we rewrite the Lagrange density in terms of the generalized vector potential (assuming
a flat space time with ηαβ = gαβ)

L =−1

4
gαµgβν(∂µAν−∂νAµ)(∂αAβ−∂βAα). (2.8)
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Second Exercise sheet Particles and Fields

At first we compute the derivative of the lagrange density with respect to ∂κAλ

∂L

∂(∂κAλ)
=−1

4
ηαµηβν

∂

∂(∂κAλ)
[(∂µAν−∂νAµ)(∂αAβ−∂βAα)]

=−1

4
ηαµηβν[(∂µAν−∂νAµ)

∂

∂(∂κAλ)

(
∂αAβ−∂βAα

)
+ (∂αAβ−∂βAα)

∂

∂(∂κAλ)

(
∂µAν−∂νAµ

)
]. (2.9)

We can now use equation (2.6) for the derivatives

∂

∂(∂κAλ)

(
∂αAβ−∂βAα

)= δκαδλβ−δκβδλα, (2.10)

which leads to

∂L

∂(∂κAλ)
=−1

4
ηαµηβν[(∂µAν−∂νAµ)︸ ︷︷ ︸

=Fµν

(δκαδ
λ
β−δκβδλα)+ (∂αAβ−∂βAα)︸ ︷︷ ︸

=Fαβ

(δκµδ
λ
ν −δκνδλµ)]

=−1

4

[(
ηκµηλν−ηλµηκν

)
Fµν+

(
ηκαηλβ−ηλαηκβ

)
Fαβ

]
=−1

4
(Fκλ−Fλκ+Fκλ−Fλκ)

=−Fκλ

⇒ ∂κ
∂L

∂(∂κAλ)
=−∂κFκλ. (2.11)

By using that ∂L /∂(Aκ) =−Jκ we can write the equation of motion as

Jκ = ∂κFκλ . (2.12)

b.) Solution: L can be rewritten in terms of φ1,2 as

L = 1

2
(∂µφ1)(∂µφ1)− 1

2
m2φ2

1 +
1

2
(∂µφ2)(∂µφ2)− 1

2
m2φ2

2

= (φ1,∂µφ1︸ ︷︷ ︸
e.o.m.

,φ2,∂µφ2︸ ︷︷ ︸
e.o.m.

). (2.13)

The equations of motion (e.o.m.) read

∂L

∂φ1
−∂ν ∂L

∂(∂νφ1)
= 0 (2.14)

∂L

∂φ2
−∂ν ∂L

∂(∂νφ2)
= 0. (2.15)
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Second Exercise sheet Particles and Fields

As was done in the lecture we get

∂L

∂φ1
=−m2φ1,

∂L

∂(∂νφ2)
= 1

2

∂

∂(∂νφ1)
[(∂µφ1)(∂µφ1)]

= 1

2

[
δνµ(∂µφ1)+ (∂µφ1)

∂

∂(∂νφ1)

(
∂µφ1

)]
= 1

2

[
∂νφ1 +ηµρ(∂µφ1)

∂(∂ρφ1)

∂(∂νφ1)

]
= 1

2

[
∂νφ1 + (∂ρφ1)δνρ

]
= 1

2

[
∂νφ1 +∂νφ1

]= ∂νφ1. (2.16)

From both φ1 and φ2 this results in the Klein-Gordon equation

(□+m2)φ1 = 0, (□+m2)φ2 = 0, where □= ∂µ∂µ. (2.17)

c.) Solution: Here we consider ψ and ψ∗ as independent. The covariant differential is

∂µ = ∂

∂xµ
=

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (2.18)

Then, the Euler-Lagrange equations of motion read

∂L

∂ψ
−∂t

∂L

∂(∂tψ)
−∇⃗∇∇ ∂L

∂(∇⃗∇∇ψ)
= 0 (2.19)

∂L

∂ψ∗ −∇⃗∇∇ ∂L

∂(∇⃗∇∇ψ∗)
= 0. (2.20)

Thus, for equation (2.19) and (2.20) we find

∂L

∂ψ
=−ψ∗V (x),

∂L

∂(∂tψ)
= iψ∗,

∂L

∂(∇⃗∇∇ψ)
=− 1

2m
(∇⃗∇∇ψ∗) (2.21)

∂L

∂ψ∗ =−ψV (x)+ i∂tψ,
∂L

∂(∇⃗∇∇ψ∗)
=− 1

2m
(∇⃗∇∇ψ). (2.22)

Hence this leads to

i(∂tΨ
∗) = 1

2m
∆ψ∗−ψ∗V (x) (2.23)

i(∂tΨ) =− 1

2m
∆ψ+ψV (x). (2.24)

Exercise 4: Consider the following Lagrange density (Proca theory)

L =−1

4
FµνFµν+ 1

2
µ2 AµAµ− JµAµ. (2.25)

a) Derive the equations of motion.
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Second Exercise sheet Particles and Fields

b) Which condition hast to be imposed on Aµ in order to maintain current conservation?
How does this simplify the equations of motion?

c) Consider the static limit, i.e, Aµ becomes independent of time. Let the current be given
by a point charge J0 = qδ(3)(x), Ji = 0. How does the static potential A0 look like? Inter-
pret the quantity µ in the light of this result.

a.) Solution Using the Euler-Lagrange equation we get

∂L

∂Aα
−∂β

∂L

∂(∂βAα)
= 0

µ2 Aα− Jα+∂βFβα = 0

µ2 Aα+∂βFβα = Jα. (2.26)

b.) Solution Normally µ= 0. This leads to a gauge symmetry

Aµ→ A′
µ = Aµ−∂µxi

⇒L (A′
µ,∂m A′

µ) =L (Aµ,∂m Aµ) (2.27)

Here we have µ ̸= 0. The continuity equation yields

∂α Jα = ∂tρ+∇⃗∇∇··· J = 0 =µ2∂αAα+∂α∂βFαβ︸ ︷︷ ︸
0

0 =µ2∂αAα. (2.28)

The version of Maxwells equations with mass µ the gauge symmetry is broken. We have to
stick to the Lorentz gauge.

c.) Solution: We can use the result of b.)

∂µAµ = 0 ⇒ ∂µFµν = ∂µ[∂µAν−∂νAµ] = ∂µ∂µAν−∂µ∂µAµ︸ ︷︷ ︸
=0

=□Aν. (2.29)

The equations of motion then read

□Aν+µ2 Aν = Jν. (2.30)

Now we use the J0 = qδ(3)(x). In the static limit we get

Aµ = Aµ(x) ⇒□Aµ =□Aµ(x)

= ∂µ∂µAµ(x) =∇2 Aµ(x). (2.31)

Therefore we get

−∇2 Aµ+µ2 Aµ = Jµ. (2.32)
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The fields generated by a static charge are spherically symmetric. That means A0(x) = A0(r ).
Then we can write the Laplacian in spherical coordinates:(

1

r 2

)
∂

∂r

(
r 2∂A0(r )

∂r

)
−µ2 A0(r ) = qδ(r ). (2.33)

We assume that the solution is

A0(r ) = () (2.34)
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3 Third Exercise sheet

Exercise 7: From a pragmatic viewpoint, functioal differentiation can be defined by the
conditions that the algebraic rules for standard derivatives apply,

δ

δφ(x)

(
F1[φ]+F2[φ]

)= δ

δφ(x)
F1[φ]+ δ

δφ(x)
F2[φ], (linearity)

δ

δφ(x)

(
F1[φ]F2[φ]

)= F1[φ]
∂

∂φ(x)
F2[φ]+F2[φ]

δ

δφ(x)
F1[φ], (Leibniz rule) (3.1)

where Fi [φ] are functionals of φ, and that additionally we have:

δ

δφ(y)
φ(x) = δ(D)(x − y). (3.2)

Verify that

δ

δφ(y)

ˆ
dD xφ(x)J (x) = J (y),

δ

δφ(y)
exp

(ˆ
dD xφ(x)J (x)

)
= J (y)exp

(ˆ
x
φ(x)J (x)

)
. (3.3)

Solution: We can use the Leibniz rule and change integral and derivative to show that

δ

δφ(y)

ˆ
dD xφ(x)J (x) =

ˆ
dD x

δφ(x)

δφ(y)
J (x)+

ˆ
dD xφ(x)

�
�
��δJ (x)

δφ(y)

=
ˆ

dD xδ(x − y)J (x) = J (y). (3.4)

The second relation can be shown by rewriting the exponential function as its Taylor series
expansion

δ

δφ(y)
exp

(ˆ
dD xφ(x)J (x)

)
= δ

δφ(y)

∞∑
n=0

1

n!

(ˆ
dD xφ(x)J (x)

)n

=
∞∑

n=0

1

n!

δ

δφ(y)

(ˆ
dD xφ(x)J (x)

)n

=
∞∑

n=1

1

n!
n

(ˆ
dD xφ(x)J (x)

)n−1

J (y)

=
∞∑

m=0

1

m!

(ˆ
dD xφ(x)J (x)

)m

J (y)

= exp

(ˆ
dD xφ(x)J (x)

)
J (y). (3.5)
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Exercise 8: Given a classical action S for a field φ(x) in spacetime. We can formulate
Hamilton’s principle with the aid of the functional derivative:

δS[φ]

δφ(x)
= 0. (3.6)

Show that for actions of the type S[φ] = ´ dD y L (φ,∂µφ; y), we can obtain the Euler-Lagrange
equations as discussed in the lecture.

Solution: We can use the action principle δS[φ] = 0 to obtain the Euler-Lagrange equa-
tions

0 = δS[φ]

δφ(x)
=
ˆ

dD y
δ

δφ(x)
L (φ,∂µφ; y)

=
ˆ

dD y

[
δφ(y)

δφ(x)

∂L

∂φ(y)
+ δ(∂µφ(y))

δφ(x)

∂L

∂(∂µφ(x))

]
=
ˆ

dD y

[
δ(D)(y −x)

∂L

∂φ(y)
+∂µδ(D)(y −x)

∂L

∂(∂µφ(y))

]
. (3.7)

We can now use integration by parts to bring the derivative ∂µ to the second factor

= ∂L

∂φ(x)
+
ˆ

∂V

dD−1 y ∂µδ
(D)(y −x)

∂L

∂(∂µφ(x))︸ ︷︷ ︸
=0

−
ˆ

dD y δ(D)(y −x)∂µ
∂L

∂(∂µφ(y))
. (3.8)

The integral vanishes, because we assume that x is not on the boundary of the integration
volume.

0 = ∂L

∂φ(x)
−∂µ ∂L

∂(∂µφ(x))
. (3.9)

Exercise 9: For a classical field φ(x , t ) with an associated canonical conjugate momen-
tum density π(x , t ), we can define the Poisson brackets analogously to classical mechanics.
Let A[φ,π] and B [φ,π] be two general phase space functionals, then the Poisson bracket in
d = D −1 space dimensions is given by (we ignore the time argument t in the following for
simplicity)

{A,B} :=
ˆ

dd z

(
δA

δφ(z)

δB

δπ(z)
− δA

δπ(z)

δB

δφ(z)

)
. (3.10)

a) Verify the fundamental Poisson brackets{
φ(x),φ(y)

}= 0,
{
π(x),π(y)

}= 0,
{
φ(x),π(y)

}= δ(d)(x − y). (3.11)

The time evolution of the field and the momentum is generated by the Hamilton func-
tion H according to the canonical equations of motion

φ̇(x) = {
φ(x), H

}
, π̇(x) = {π(x), H }. (3.12)
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b) Compute the equations of motion for Klein-Gordon theory with the Hamilton function

H ≡
ˆ

dd y H (y) =
ˆ

dd y
1

2

(
π2 + (∇⃗∇∇φ)2 +m2φ2

)
(3.13)

where H (y) is the Hamilton density.

a.) Solution:

{
φ(x),φ(y)

}= ˆ dd z

(
δφ(x)

δφ(z)
�
�

��δφ(y)

δπ(z)
−
�
�

��δφ(x)

δπ(z)

δφ(y)

δφ(z)

)
= 0 (3.14)

{
π(x),π(y)

}= ˆ dd z

(
�
�
��δπ(x)

δφ(z)

δπ(y)

δπ(z)
− δπ(x)

δπ(z)
�

�
��δπ(y)

δφ(z)

)
= 0 (3.15)

{
φ(x),π(y)

}= ˆ dd z
( δφ(x)

δφ(z)︸ ︷︷ ︸
=δ(x−z)

δπ(y)

δπ(z)︸ ︷︷ ︸
=δ(y−z)

−
�

�
��δφ(x)

δπ(z)
�
�

��δπ(y)

δφ(z)
)δ(d)(x − y

)

=
ˆ

dd zδ(x − z)δ(y − z) = δ(x − y). (3.16)

b.) Solution: First we introduce some useful relations concerning Poisson brackets:

{A,BC } = {A,B}C +B{A,C } (3.17){
A,B 2}= 2B{A,B}. (3.18)

Lets first calculate the time derivative of φ(x)

φ̇(x) = {
φ(x), H

}= ˆ dd y

{
φ(x),

1

2
π2(y)

}
(3.18)=
ˆ

dd y 2π(y)
1

2

{
φ(x),π(y)

}
=
ˆ

dd y π(y)δ(D)(x − y) =π(x). (3.19)

We can compute the second derivative of φ(x) by deriving the first derivative of π(x)

π̇(x) = {π(x), H } =
ˆ

dd y

{
π(x),

1

2
(∇⃗∇∇φ(y))2 + 1

2
m2φ(y)

}
(3.18)=
ˆ

dd y

[
1

2

{
π(x),∂iφ(y)

}(
2∂iφ(y)

)+ 1

2

{
π(x),φ(y)

}
2m2φ(y)

]
(3.20)

We can pull the derivative out of the Poisson bracket and use its anti-commutating proper-
ties {A,B} =−{B , A}

=
ˆ

dd y
[−∂iδ

(D)(x − y)∂iφ(y)−m2δ(D)(x − y)φ(y)
]
. (3.21)

13
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We can again perform an integration by parts and transfer the derivative of the Delta-function
to the second factor

π̇(x) =
ˆ

dd y
[+δ(D)(x − y)(∂i∂iφ(y))−m2δ(D)(x − y)φ(y)

]
= [(∂i )2 −m2]φ(x). (3.22)

Now we can express the second time derivative of the field φ(x):

φ̈(x) = [(∂i )2 −m2]φ(x)

⇒ [(∂t )2 − (∂i )2 +m2]φ= 0

⇒ [□+m2]φ= 0. (3.23)

14
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4 Fourth Exercise sheet

Exercise 10: Consider a classical field theory which is invariant under translations xµ →
xµ−aµ. The corresponding Noether charge is given by the 4-momentum of the field φ,

Pµ =
ˆ

d3x (Π∂µφ− gµ0L ). (4.1)

Show that the Noether charge is also the generator of spacetime translations, i. e., show
that

δφ=−aµ{φ(x),Pµ}. (4.2)

Solution: From the lecture notes we deduce that under infinitesimal spacetime transla-
tions

xµ→ xµ−aµ, φ(x) →φ′(x) =φ(x −a) =φ(x)−aµ∂
µφ(x)

=φ(x)+δφ(x) with δφ(x) =−aµ∂
µφ(x). (4.3)

First, let us look at the 0th component of the Noether charge

P 0 =
ˆ

d3x (Πφ̇−L ) =
ˆ

d3x H = H (4.4)

From Hamiltons equations of motion we obtain the evolution equation generated by P 0 as

φ̇= ∂0φ= {φ, H } = {φ,P 0}. (4.5)

For the spatial components (i = 1,2,3) we use g i 0 = 0 to find

P i =
ˆ

d3xΠ∂iφ. (4.6)

Then, the Poisson bracket evaluates as

{φ,P i } =
ˆ

d3 y {φ(x),Π(y)∂iφ(y)} use {A,BC } = B{A,C }+ {A,B}C

=
ˆ

d3 y {φ(x),Π(y)}︸ ︷︷ ︸
δ(x−y)

∂iφ(y)+ {φ(x),∂iφ(y)}︸ ︷︷ ︸
=0

Π(y) = ∂iφ(x). (4.7)

Now, combining equations (4.5) and (4.7) leads to

{φ,Pµ} = ∂µφ(x) ⇒ −aµ{φ(x),Pµ}
(4.3)= δφ(x). (4.8)

15
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Exercise 11: use Noether’s theorem to construct the (canonical) energy-momentum ten-
sor for the classical electromagnetic field from the Lagrangian

L =−1

4
FµνFµν, Fµν = ∂µAν−∂νAµ. (4.9)

Convince youself that this does not result in a symmetric tensor, i. e., T µν ̸= T νµ; also the
result is not gauge invariant. A symmetric gauge-invariant tensor can nevertheless be con-
structed by adding a term of the form

T̂ µν = T µν+∂λK λµν, where K λµν =−K µλν. (4.10)

The anti-symmetry of K λµν with respect to its first two indices guarantees that Noether’s con-
servation law still applies, ∂µT µν = 0. Show that this construction with K λµν = FµλAν leads
to the desired (symmetric, gauge-invariant) result. Show also the components are related to
standard quantities, such as the energy density ε= T 00 = 1

2 (E 2 +B 2) and the Poynting vector
(momentum density) S = E ×B , where Si = T̂ 0i . (Hint: for the last step, use E i = −F 0,i and
εi j k B k =−F i j ). Also show that T̂ µν is traceless.

Solution: In the lecture we defined the canonical energy-momentum tensor as

T µν = ∂L

∂(∂µφ)
∂νφ− gµνL . (4.11)

Then, using φ→ Aλ(x) we can find the Maxwell energy-momentum tensor

T µν

Maxwell =
∂L

∂(∂µAλ)
∂νAλ− gµνL

(2.11)= −Fµλ(∂νAλ)− gµνL

(4.9)= −gνρFµλ(∂ρAλ)+ 1

4
gµνFλκFλκ ̸=T νµ

Maxwell. (4.12)

Under gauge transformations

Aµ(x) → A′
µ(x) = Aµ(x)+∂µΛ(x), (4.13)

the energy-momentum tensor changes as

T ′µν =−F ′µλ∂νA′
λ+

1

4
gµνF ′

λκF ′λκ. (4.14)

The Fµν tensor is actually gauge invariant

F ′
µν = ∂µA′

ν−∂νA′
µ = ∂µ(Aν+∂νΛ)−∂ν(Aµ+∂µΛ)

= ∂µAν−∂νAµ︸ ︷︷ ︸
Fµν

+∂µ∂νΛ−∂ν∂µΛ︸ ︷︷ ︸
=0

. (4.15)
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Then, equation (4.14) can be written as

T ′µν =−Fµλ∂ν[Aλ+∂λΛ]+ 1

4
gµνFλκFλκ

= 1

4
gµνFλκFλκ−Fµλ(∂νAλ)︸ ︷︷ ︸

T
µν

Maxwell

−Fµλ(∂ν∂λΛ)︸ ︷︷ ︸
breaks gauge invariance

. (4.16)

Now, consider the modified energy-momentum tensor from equation (4.10). Note that the
following relation holds:

∂µT̂ µν = ∂µT µν

Maxwell︸ ︷︷ ︸
=0

+∂µ∂λK λµν︸ ︷︷ ︸
=0

= 0. (4.17)

We can show that the second part vanishes by using the anti-symmetry of K λµν

∂µ∂λK λµν = ∂λ∂µK λµν = ∂µ∂λK µλν =−∂µ∂λK λµν = 0. (4.18)

If we now choose K λµν = FµλAν, then

T̂ µν = T µν

Maxwell +∂λ(FµλAν)

with ∂λ(FµλAν) = (∂λFµλ)︸ ︷︷ ︸
=0

Aν+Fµλ(∂λAν)

= 1

4
gµνFλκFλκ−Fµλ(∂νAλ)+Fµλ(∂λAν)

= 1

4
gµνFλκFλκ+FµλF ν

λ

= 1

4
gµνFλκFλκ+ gνρFλρFµλ = T̂ νµ. (4.19)

Since F ′
µν = Fµν is gauge invariant, T̂ ′µν = T̂ µν is also gauge invariant.

Now we can show that the energy density relation T 00 = 1
2 (E 2 +B 2) holds. The following

relations hold:

F 0i =−E i , F 0i = F i
0 =−F0i =−F 0

i , F i j =−F j
i = Fi j =−εi j k B k . (4.20)

Than the zero component of the energy-momentum tensor is

T̂ 00 = F 0i F 0
i︸︷︷︸

F 0i

+1

4
g 00( F0i︸︷︷︸

−F 0i

F 0i +Fi 0F i 0︸ ︷︷ ︸
−F i 0F i 0

+Fi j F i j )

= E i E i + 1

4
(−2E i E i +F i j F i j )

= 1

2
E i E i + 1

4
εi j k B kεi j l B l = 1

2
(E 2 +B 2). (4.21)

Finally we can show

T̂ 0i = F i
k F 0k =−E kεki j B j = εi k j E k B j = (E ×B )i = Si . (4.22)
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Exercise 12: Consider the action,

S =
ˆ

d4x

(
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ̄

4!
φp

)
, (4.23)

with some power p for the nonlinear term. Study the behavior of the action under scale
transformations (dilatations)

x →λx, φ(x) →λ−Dφ(λ−1x), λ> 0, (4.24)

where D is a scaling exponent (dilatation weight) for the field φ. Under which conditions is
the action scale invariant? Determine the corresponding conserved current using Noether’s
theorem.

Solution: Using the transformation of φ(x), the derivative transforms as

∂µφ→λ−D−1∂µφ. (4.25)

Then, the transformation of the first part of the integral reads
ˆ

d4x
1

2
(∂µφ(x))(∂µφ(x)) →λ4

ˆ
d4xλ−2D−2(∂µφ(λx))(∂µφ(λx)). (4.26)

This part is invariant for a scaling exponent D = 1. Then the other parts of the integral be-
come

ˆ
d4x

(
1

2
m2φ2(x)+ λ̄

4!
φp (x)

)
→
ˆ

d4x

(
1

2
λ4−2m2φ2︸ ︷︷ ︸

invariant for m=0

+ λ̄

4!
λ4−pφp︸ ︷︷ ︸

invariant for p=4

)
. (4.27)

The invariant action can then be written as

S =
ˆ

d4x

(
1

2
(∂µφ)(∂µφ)− λ̄

4!
φ4

)
. (4.28)

For the Noether current we first need to calculate δφ. For a small scale transformation λ =
1+ε, the field transforms as

φ→ 1

λ
φ

( x

λ

)
= 1

1+εφ(u) with u = x

1+ε
= 1

1+εφ(u)

∣∣∣∣
ε=0

+φ′(u)

∣∣∣∣
ε=0

ε+O
(
ε2)

=φ(x)+ −1

(1+ε)2
φ

( x

1+ε
)∣∣∣∣
ε=0

ε

=φ(x)−εφ(x)−εxν∂νφ(x)︸ ︷︷ ︸
δφ

. (4.29)
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Now, the change in the Lagrange density can be calculated as

δL = δ
(

1

2
(∂µφ)(∂µφ)− λ̄

4!
φ4

)
=

(
(∂µφ)(∂µδφ)− λ̄

3!
φ3δφ

)
=−ε

(
2(∂µφ)(∂µφ)+ (∂µφ)(∂µ∂νφ)− λ

3!
φ3xν∂νφ−4

λ

4!
φ4

)
=−ε

(
4L +x∂ν

(
1

2
(∂µφ)(∂µφ)− λ

4!
φ4

))
=−ε(4L +xν∂νL )

=−ε∂ν(xνL ) = ∂νK ν with K ν =−εxνL . (4.30)

Then the Noether current is determined by

Jµ =Πµδφ−K µ with K µ =−εxνL and δφ=−ε(φ(x)+xν∂νφ(x)). (4.31)

19



Fifth Exercise sheet Particles and Fields

5 Fifth Exercise sheet

Exercise 13: Consider the Lagrangian for a triplet of real scalar fieldsφa , (a = 1,2,3), defin-
ing a classical field theory with rotational O(3) invariance in field space,

L = 1

2
(∂µφ

a)(∂µφa)−V (φaφa). (5.1)

a) Verify that the action is invariant under infinitesimal rotations in field space, which
can be written analogously to rotations in coordinate space as φa → φa +θεabc n̂bφc ,
where n̂b is a unit vector defining the rotation axis, and θ≪ 1 is an infitesimal rotation
angle.

b) Compute the Noether current and the Noether charge.

c) Verify the conservation of the Noether charge explicitly by using the equation of mo-
tion.

Solution a): The first part of the Lagrangian transforms as follows:

(∂µφ
a)(∂µφa) →[(∂µφ

a)+θεabc n̂b∂µφ
c ][(∂µφa)+θεabc n̂b∂µφc ]

=[
(∂µφ

a)(∂µφa)+2θεabc n̂b(∂µφ
a)(∂µφc )︸ ︷︷ ︸

=0 (a↔c)

+O
(
θ2)]. (5.2)

The expression φaφa transforms as

φaφa →(φa +θεabc n̂bφa)(φa +θεabc n̂bφc )

=φaφa +2θεabc n̂bφcφc︸ ︷︷ ︸
=0 (a↔c)

+O
(
θ2) (5.3)

⇒V (φaφa) →V (φaφa). (5.4)

Thus we find that L is invariant under infinitesimal rotations.

Solution b): From the lecture we can calculate the Noether current as

Jµ = ∂L

∂∂µφa
δφa − K µ︸︷︷︸

=0

= ∂µφaθεabc n̂bφc = θ(∂µφa)(n̂ ×φ)a . (5.5)

The surface term K µ disappears for an invariant Lagrangian, since δL = ∂µK µ. In the follow-
ing we drop θ by rewriting the Noether current Jµ = θ jµ. The Noether charge is then given
by the integral of the zero-component of jµ as

Q =
ˆ

d3x j 0 =
ˆ

d3x (∂0φ
a)(n̂ ×φ)a =

ˆ
d3x εabc φ̇an̂bφc . (5.6)
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Solution c): To determine the conservation of the Noether charge Q, we compute the
equations of motion

δS

δφa
= 0 ⇔ ∂L

∂φa
−∂µ

(
∂L

∂(∂µφa)

)
= 0

⇔− ∂V

∂φa
−∂µ∂µ︸ ︷︷ ︸

=□

φa = 0

⇔− ∂V

∂(φbφb)

∂(φbφb)

∂(φaφa)
+□φa = 0. (5.7)

The time derivative of the Noether charge is

Q̇ = ∂

∂t

[ˆ
d3x εabc n̂bφ̇aφc

]
=
ˆ

d3x εabc φ̈aφc n̂b +
ˆ

d3x εabc n̂bφ̇aφ̇c︸ ︷︷ ︸
=0 (a↔c)

. (5.8)

The equations of motion can be decomposed as[
∂2

0 −∂2
i +V ′]φa = 0 ⇔ φ̈a = (∂2

i φ
a)−V ′φa . (5.9)

Inserting them into Q̇ leads to

Q̇ =
ˆ

V
d3x εabc∂i (∂iφ

a)φc n̂b −
ˆ

V
d3x εabc n̂bVφaφb︸ ︷︷ ︸

=0 (a↔c)

P.I.= εabc n̂b (∂iφ
a)φc︸ ︷︷ ︸

=0

∣∣∣∣
∂V

−
ˆ

d3x εabc (∂iφ
a)(∂iφ

c )︸ ︷︷ ︸
=0(a↔c)

n̂b = 0. (5.10)

Exercise 14: Consider an almost O(N ) invariant scalar model with Lagrangian

L = 1

2
(∂µφ

a)(∂µφa)−
(
−1

2
µ2φaφa + λ

4!
(φaφa)2

)
︸ ︷︷ ︸

V (φaφa )

−δV , (5.11)

where a = 1, . . . , N and δV is a potential term that breaks O(N ) symmetry explicitly. Upon
spanning φa by a parametrization φ= (πi ,Σ), where i = 1, . . . , N −1, δV takes the form δV =
−hΣwith a positive constant parameter h > 0.

a) Determine the position of the global minimum of the potential to first order in h.

b) Verify that the would-be Goldstone bosons acquire a mass. Compute the mass to first
order in h.

Solution a): We start by writing the potential with the parametrization φ= (πi ,Σ) as

V =−1

2
µ2π2 − 1

2
µ2Σ2 + λ

4!
(π2 +Σ2)2 −hΣ. (5.12)
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Schematically, the potential term δV tilts the potential towards the positive Σ axis. Thus, the
global minimum is at πi = 0 and at a finite Σ0. Hence, the global minimum corresponds to

0 = ∂V

∂Σ

∣∣∣∣
πi=0,Σ0

⇔
(
λ

3!
Σ2

0 −µ2
)
Σ0 −h = 0. (5.13)

In case of h = 0 this yields

Σh=0
0 =

√
6µ2

λ
. (5.14)

Now we make the ansatz that for nonzero h the solution Σ0 can be written as

Σ0 =Σh=0
0 +αh. (5.15)

Inserting this into the above relation (5.13) yields

0 =
−µ2 + λ

3!

6µ2

λ
+2

√
6µ2

λ
αh +O

(
h2) ·

√
6µ2

λ
+O (h)

−h. (5.16)

This can be solved for α

α= 1

2µ2
⇔Σ0 =

√
6µ2

λ
+ h

2µ2
, (5.17)

which is now a global minimum to O (h) order.

Solution b): For this discussion we again define Σ = Σ0 +σ(x). The potential V can then
be written as

V =−1

2
µ2π2 − 1

2
µ2(Σ0 +σ(x))2 + λ

4!
(π2 + (Σ0 +σ)2)2 −h(Σ0 +σ(x)). (5.18)

Now, the pseudo-Goldstone boson aquires a mass term m2
π which is quadratic in the πi field.

Neglecting all other terms leads to

V =−1

2
µ2π2 + 2λ

4!
π2Σ2

0 +O
(
π4,π4σ,π2σ

)
Calculate: Σ2

0 =
√

6µ2

λ
+ h

2µ2

2

= 6µ2

λ
+

√
6µ2

λ

h

µ2
+O

(
h2)

=−1

2
µ2π2 + 2λ

4!

6µ2

λ
π2︸ ︷︷ ︸

=0

+2λ

4!

√
6µ2

λ

h

µ2
π2 +O

(
h2,π4,π4σ,π2σ

)

= 1

2
h

√
λ

6µ2
π2 = 1

2
m2
ππ

2 with m2
π = h

√
λ

6µ2
. (5.19)
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Exercise 15: Consider the action for a free O(N ) symmetric field theory,

L = 1

2
(∂µφ

a)(∂µφa). (5.20)

a) Convince yourself that the theory becomes interacting by simply imposing the con-
straint φaφa = 1. For this, use the parametrization of exercise 14, eliminate the Σ field
by the constraint, and compute the leading interactions for small πi fluctuations.

b) This model is called a nonlinear σ model. Construct a suitable limit procedure such
that the nonlinear model arises from the linear σ model (of exercise 14 with δV = 0).

Solution a): With the constraint φaφa = 1 and φ= (πi ,Σ), the Σ field can be written as

Σ2 + (πi )2 = 1 ⇒ Σ=
√

1− (πi )2 (5.21)

⇒ ∂µΣ=− 1√
1− (πi )2

(π∂µπ). (5.22)

Then the Lagrangian transforms as

L = 1

2
(∂µπ)(∂µπ)+ 1

2
(∂µΣ)(∂µΣ)

= 1

2
(∂µπ)(∂µπ)+ 1

2

(π∂µπ)2

1−π2

= 1

2
(∂µπ)(∂µπ)+ 1

2
(π∂µπ)2 + . . . . (5.23)

Solution b): We start with the Lagrangian with a potential (with δV = 0) previously given
by (5.12)

L = 1

2
(∂µπ)(∂µπ)+ 1

2
(∂µΣ)(∂µΣ)+ 1

2
µ2π2 + 1

2
µ2Σ2 − λ

4!
(π2 +Σ2)2︸ ︷︷ ︸

−V

. (5.24)

Again we demand the following

∂V

∂Σ

∣∣∣∣
πi=0,Σ0

= 0 ⇒ Σ0 =
√

6µ2

λ
. (5.25)

Then we find with the given constraint φaφa = 1

φaφa
∣∣∣∣
min

= 1 =Σ2 +π2
∣∣∣∣
min

=Σ2
0 ⇒ λ= 6µ2. (5.26)

Now defining Σ= v +σ(x) we have

V =−1

2
µ2π2 −µ2vσ− 1

2
µ2σ2 + λ

4!
π4 + λ

4!

(
4vσ3 +6v2σ2 +4v3σ+σ4)+ 2λ

4!
π2(v +2vσ+σ2)

= 1

2
(−µ2 + λ

2
v2)σ2︸ ︷︷ ︸

mass of sigma

+ λ

4!
π4 + λ

4!
σ4 + λ

6
vσ3 + λ

6
vπ2σ+ λ

12
π2σ2︸ ︷︷ ︸

interaction

. (5.27)
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Then, using (5.26), the sigma mass can be determined to be

m2
σ =−µ2 + λ

2
v2 = 2µ2 with v = 6µ2

λ
= 1. (5.28)

With the constraint π2 +Σ2 = 1 and for π2 ≪ 1, the σ(x) must be very small σ(x) ≪ 1. For a
small width σ, the curvature of V (Σ) has to go to infinity

V ′′(Σ)

∣∣∣∣
Σ=v

= m2
σ→∞. (5.29)

24



Sixth Exercise sheet Particles and Fields

6 Sixth Exercise sheet

Exercise 16: The nonrelativistic version of scalar QED,

L =−1

4
FµνFµν+ψ∗i∂tψ− 1

2m
(Dψ)∗ ·Dψ−V (ψ∗ψ), (6.1)

where D =∇− iq A, can be used to describe superconductors. Here, the complex scalar field
ψ should be thought of as the wave function of the coherent bosonic state that describes the
Cooper pairs; hence, its charge is q = 2e. The model has a local gauge invariance.

a) Local gauge invariance also implies a global phase invariance of the scalar field, ψ→
e−iαψ. Compute the Noether current Jµ of this symmetry. Verify that the spatial com-
ponents (up to the infinitesimal symmetry parameterα) agree with the Cooper current

j = i

2m
((Dψ)∗ψ−ψ∗Dψ). (6.2)

b) Assume that the potential V inside a superconductor has a minimum at a finite field
amplitude at |ψ| > 0. Verify that the generic form of the wave function in this ground
state then is ψ = √|ρ|eiϕ, where ρ agrees with the Noether current density up to the
infinitesimal parameter and ϕ=ϕ(x , t ) is an arbitrary phase.

c) Compute the Cooper current for this ground state of a constant density ρ = const. and
verify that the maxwell equation ∇⃗∇∇×××B = j implies the London equation

∇∇∇2 = 1

λL
B . (6.3)

Computeλ2
L and convince yourself thatλL can be interpreted as the penetration depth

of a magnetic field into a superconductor, thus explaining the Meißner-Ochsenfeld
effect. How is the penetration depth related to the photon mass?

Solution a): The global phase variance for a small angle α can be written as

ψ→ e−iαψ=ψ− iαψ⇒ δψ=−iαψ (6.4)

ψ∗ → eiαψ∗=ψ∗+ iαψ∗ ⇒ δψ∗ = iαψ∗. (6.5)

According to the lecture, the Noether current Jµ = (ρ, J ) is given by

Jµ = ∂L

∂(∂µψ)
δψ+ ∂L

∂(∂µψ∗)
δψ∗. (6.6)

The zero component can be calculated as

ρ = ∂L

∂(∂tψ)︸ ︷︷ ︸
=iψ∗

δψ︸︷︷︸
=−iαψ

+ ∂L

∂(∂tψ∗)︸ ︷︷ ︸
=0

δψ∗ =αψ∗ψ. (6.7)
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The other components are computed as

J i = ∂L

∂(∂iψ)︸ ︷︷ ︸δψ+ ∂L

∂(∂iψ∗)
δψ∗

=− 1

2m
(D jψ)∗

∂(D jψ)

∂(∂iψ)
=− 1

2m
(D jψ)∗

∂

∂(∂iψ)
[∂ jψ− iq A j ]︸ ︷︷ ︸
=1

=− 1

2m
(D jψ)∗

= iα

2m
[(D jψ)∗ψ−ψ∗(D jψ)]. (6.8)

Solution b): Assuming that V (ψ∗ψ) has a minimum at ψ0 : |ψ0| > 0, we find

|ψ0|2 = ρ > 0. (6.9)

Then, for the ground state, we require |ψ0(x , t )| = p
ρ. Due to local gauge invariance ψ→

e−iα(x ,t )ψ, then we have the freedom to add a phase term

ψ0(x , t ) =p
ρeiφ(x ,t ). (6.10)

Solution c): The Cooper current for the minimum ψ0(x , t ) for ρ = const. reads

J = i

2m

[
∇⃗∇∇(p

ρe−iφ)p
ρeiφ−p

ρe−iφ(∇⃗∇∇pρeiφ)+ iq Aψ∗ψ+ iq Aψ∗ψ
]

= ρ

m
[∇⃗∇∇φ−q A]. (6.11)

From Maxwell’s equations (∇⃗∇∇···B ) = 0 and (∇⃗∇∇×××B ) = J we find

∇⃗∇∇×××
(
∇⃗∇∇×××B

)
= ∇⃗∇∇××× J = ρ

m

[
∇⃗∇∇×××

(
∇⃗∇∇φ

)
︸ ︷︷ ︸

=0

−q (∇⃗∇∇××× A)︸ ︷︷ ︸
=B

]
=−qρ

m
B (6.12)

∇⃗∇∇×××
(
∇⃗∇∇×××B

)
= ∇⃗∇∇

(
∇⃗∇∇···B

)
︸ ︷︷ ︸

=0

−∆B . (6.13)

Combining both yields then

∆B = ρq

m
B London equation, (6.14)

where λL =
√

m
qρ is the London penetration length. In order to justify the interpretation of

λL , we consider the boundary of a super conductor. Outside the super conductor B propa-
gates in an arbitrary direction |B | = |B0|. In the z-direction of the super conductor B should
satisfy

∂2

∂z2
B = 1

λ2
L

B ⇒ B = B0e
− z
λL . (6.15)
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From here we can see that λL describes the depth of penetration of the magnetic field in-
side the super conductor. The magnetic field depletes quickly inside the super conductor.
The conservation of magnetic flux in combination with the London equation leads to the
Meißner-Ochsenfeld effect

φB =
Ï

Surf.
B ds ⇒φB = 0. (6.16)

The magnetic field lines are ejected from the super conductor. The conclusion holds true
since the magnetic field can only penetrate the super conductor until the penetration length
but the same number of magnetic field liens that enter the super conductor leaves as well.

Finally, we relate λL with the photon mass

L =− 1

2m
(Dψ)∗(Dψ)+ . . .

=− 1

2m
q2ρA2 + . . .

=− 1

2m
m2

A A2 ⇒ m2
A = q2ρ

m
= q

λL
. (6.17)

The photon mass corresponds to the inverse penetration length. This means the Meißner ef-
fect can be explained by assuming that photons inside a super conductor acquire an effective
mass. This is linked to the modified Maxwell’s equations, i. e. Proca theory.

Exercise 17: Consider an O(N ) invariant scalar model with Lagrangian

L = 1

2
(∂µφ

a)(∂µφa)−V (ρ), ρ = 1

2
φaφa , (6.18)

where a = 1, . . . , N . Given the potential with some minimum ρ0, any concrete parametriza-
tion of ρ0 in field space is legitimate and physically equivalent. Thus, the eigenvalues of the
mass matrix m2

ab = ∂2V /∂φa∂φb can be written in terms of O(N )-invariant quantities. Diag-
onalize the mass matrix in terms of such invariant expressions. The final expression should
also hold for the case ρ0 = 0.

Solution: Let us rewrite the masss matrix as follows

m2
ab = ∂2V (ρ)

∂φa∂φb
= ∂

∂φb

(
∂ρ

∂φa

∂V

∂ρ

)
= ∂2ρ

∂φb∂φa

dV

dρ
+ ∂ρ

∂φa

∂ρ

∂φb

d2V

dρ2
. (6.19)

Let us calculate the different derivatives separately:

∂ρ

∂φa
= ∂( 1

2φ
bφb)

∂φa
= 1

2
φbδab + 1

2
δabφb =φa (6.20)

∂2ρ

∂φa∂φb
= ∂

∂φb

(
φa)= δab . (6.21)
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The the mass matrix can be written as

m2
ab = dV

dρ
δab +φaφb d2V

dρ2
. (6.22)

m2
ab is the matrix we wish to diagonalize and determine its eigenvalues/eigenvectors. Let us

compute

m2
abφ

b = d2V

dρ2
φaφbφb︸ ︷︷ ︸

2ρ

+dV

dρ
φa

= [2ρV ′′(ρ)+V ′(ρ)]φa . (6.23)

hence, φb is an eigenvector of m2
ab with eigenvalues λ= 2ρV ′′(ρ)+V ′(ρ).

Let us now introduce a new field parallel to the field φ as

(χ∥)a =χ∥ φ
a

|φ| with χ∥ = χbφb

|φ|

= φa

|φ|
φa

|φ| =
1
2φ

aφb

1
2 |φ|2

χb

= 1

2
φaφb 1

ρ
χb = ρab

∥ χb . (6.24)

For a generic field vector χ, the perpendicular part can be extracted via

χ⊥ =χ−χ∥ =1χ−ρ∥χ= (1−ρ∥)χ= ρ⊥χ ⇒ ρab
⊥ = δab − 1

2

φaφb

ρ
. (6.25)

The ρ⊥ and ρ∥ matrices fulfill the following relations:

(ρ2
∥)ab = ρab

∥ ρbc
∥ = 1

4

φaφbφbφc

ρ2
= 1

2

φaρφc

ρ2
= ρac

∥ (6.26)

(ρ2
⊥)ab = . . . = ρab

⊥ . (6.27)

Furthermore, they have the following properties:

ρab
∥ ρbc

⊥ = 1

2

φaφb

ρ

(
δbc − φbφc

2ρ

)
= 1

2

φaφc

ρ
− 1

2

φaφc

ρ
= 0 (6.28)

ρab
∥ +ρbc

⊥ = δab . (6.29)

We can do this to construct a diagonalized matrix as

Â =αρ∥+βρ⊥ =


α 0 . . . 0

0 β
...

...
. . . 0

0 . . . 0 β

. (6.30)
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Then we have

Âχ∥ = (αρ∥+βρ⊥)(ρ∥χ) =αρ∥χ=αχ∥ with χ∥ =


ρ

0
...
0

 (6.31)

Âχ⊥ = (αρ∥+βρ⊥)(ρ⊥χ) =βρ⊥χ=βχ⊥ with χ⊥ =


0
π1
...

πN−1

. (6.32)

Then we can write equation (6.22) as

m2
ab =V ′′(ρ)φaφb +V ′(ρ)δab

=V ′′(ρ)2ρρab
∥ +V ′(ρ)(ρab

∥ +ρab
⊥ ) (6.33)

= [V ′′(ρ)2ρ+V ′(ρ)]ρab
∥ +V ′(ρ)ρab

⊥ . (6.34)

Now, we specify the potential as

V (ρ) = 1

2
γφaφa + λ

4!
(φaφa)2 = γρ+ λ

3!
ρ2. (6.35)

The derivatives yield

V ′(ρ) = γ+ λ

3
ρ, V ′′(ρ) = λ

3
. (6.36)

We can consider two different cases:

1. Case: γ= m2 > 0 (symmetric)

∂V (ρ)

∂φa
=φa ∂V (ρ)

∂ρ

!= 0 ⇒φa = 0 ⇒ ρ = 0. (6.37)

Then the mass of the σ and π bosons is given as

m2
σ

∣∣∣∣
ρ=0

= (V ′′(0)2 ·0+V ′(0)) = γ= m2, (6.38)

m2
π

∣∣∣∣
ρ=0

=V ′(0) = γ= m2. (6.39)

2. Case: γ=−µ2 < 0 (broken)

∂V (ρ)

∂φa
=φa ∂V (ρ)

∂ρ

!= 0 ⇒ ρ = 3µ2

λ
. (6.40)

Then we can again calculate the mass of the σ and π bosons:

m2
σ

∣∣∣∣
ρ=ρ0

= 2µ2, (6.41)

m2
π

∣∣∣∣
ρ=ρ0

=V ′(ρ0) = 0. (6.42)

We find (N −1) massless Goldstone bosons. This agrees with the results in the lecture.
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Exercise 18: Consider the action for a complex two-component scalar fieldφi ∈C, i = 1,2,

which may be summarized in a complex vectorΦ=
(
φ1

φ2

)
,

L = (∂µφ
∗
i )(∂µφi )+µ2φ∗

i φi − λ

3!
(|φ1|2 +|φ2|2)2. (6.43)

a) Identify the global symmetry group of rotations in the complex field space.

b) For µ2 > 0, the potential has minima at nonzero field values. Determine this submani-
fold in field space.

c) Select a possible vacuum stateΦ0. What is the symmetry group that leaves this ground
state invariant?

d) Now expand the field in terms of real fields denoting excitations on top of the vacuum.
Determine the number of Goldstone modes and compare this number to the number
of ”broken generators“.

Solution a): Let us replace φi ∈C by real fields φa ∈R with i = 1,2,3,4 as

φ1 = 1p
2

(φ1 + iφ2), φ∗
1 = 1p

2
(φ1 − iφ2)

φ2 = 1p
2

(φ3 + iφ4), φ∗
2 = 1p

2
(φ3 − iφ4).

(6.44)

Then, we wish to rewrite L in terms of φa ∈R. Note that

φ∗
i φi = |φ1|2 +|φ2|2 = 1

2
[(φ1)2 + (φ2)2 + (φ3)2 + (φ4)2] = 1

2
φaφa . (6.45)

Now, L can be written as

L = 1

2
(∂µφ

a)(∂µφa)+ 1

2
µ2φaφa − λ

4!
(φaφa)2. (6.46)

This corresponds to an O(4)-invariant model.

Solution b): For µ2 > 0, the global minimum can be determined as

∂V (φaφa)

∂φb
=µ2φb − λ

4!
2(φaφa)(2φb)

=
[
µ2 − λ

3!
(φaφa)

]
φb

min= φa
0φ

a
0 = (φ1

0)2 + (φ2
0)2 + (φ3

0)2 + (φ4
0)2 = 6µ2

λ
:= v. (6.47)

This corresponds to the 3-dimensional boundary of a 4-ball also known as a 3-sphere.
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Solution c): We choose the vacuum φa
0 = (

0 0 0 v
)T

. φa
0 is left invariant by all the 4×4

matrices of the form
0

θ 0
0

0 0 0 1

 with θ : 3×3 orthogonal matrices, i. e. θTθ =1. (6.48)

Thus, there is a residual O(3) symmetry.

Solution d): We do the same as in the lecture with φa =
(
π

v

)
, then by rewriting the La-

grangian we obtain:

• 3 Goldstone bosons (massless) πi , i = 1,2,3, due to the spontaneous symmetry break-
ing

• Massive radial mode m2
σ = 2µ2.

The linearly independent O(4) rotations that do not leave φa
0 invariant correspond to those

where the 4th-component is the same with the first ones i. e.

U1 =


cosφ 0 0 −sinφ

0 1 0 0
0 0 1 0

sinφ 0 0 cosφ

, U2 =


1 0 00
0 cosφ 0 −sinφ
0 0 1 0
0 sinφ 0 cosφ



U3 =


1 0 00
0 1 0 0
0 0 cosφ −sinφ
0 sinφ 0 cosφ

 (6.49)

The three broken symmetry transformation correspond to the number of Goldstone bosons.
We can now introduce the generators of O(4) rotations

K1 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

, K2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

, K3 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

, (6.50)

which generate the broken O(4) transformations Ui = eαKi . Then,

φa → (Uiφ)a α≪1≈ φa +αK ab
i φb ⇔ δφa =αK ab

i φb (6.51)

with Ki being the broken generators.
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