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First Exercise sheet Particles and Fields

1 First Exercise sheet

Exercise 1: Use the relation hc =~ 197 MeV fm valid in SI units to compute your body height
in inverse eV for those units where h =1 = c.

Solution:  Because of 1MeV = 10%eV and 1fm = 10~ '°m, the product Ac can be written
as

he=1.97-10°-107Pevm=1.

1
:>1m:0,5~107—v. (1.1)
(]

For a bodyheight of 1,93m this this leads to a result of 0,98 - 107 é, The natural units are
actually very useful, because they relate all SI units with each other. Let [L] be the dimension
of length, [T] the dimension of time and [M] the dimension of mass. Then we see that
= 1
[cl=1=I[L]-[T] = [L=[T]=—
eV
[hl=1=[M]-[L*-[T]7" = [M]=[L]""=eV

Exercise 2: Show that the particular Lorentz transformation A discussed in the lecture,
corresponding to a boost along the x axis, can be written as exp(—({K;), where

0100 y —yB 0 0
|1 000 _ |-YyB y 00

K= 000 ol ¢ = artanh(p) =>A= 0 0 1 0 (1.2)
0 00O 0 0 01

Convince yourself that a boost in ageneral direction given by the relative velocity vector
can be written as exp(—( - K). Work out the relation between f and { as well as the form of
the matrices K, and Ks.

Solution: Lets use the TAYLOR series expansion to express the exponential function:

S (—=(Ky)"

exp(—CKy) =1+
n!

n=1

1 1
:11—(K1+§(5Kl)2—§(<:1<1)3+...
_ 1 2 1 4 1 3 1 5
= [+ 5 €K + €KD" = [CKy + 5 €K + 5 (CK)°)

_ L, 1,4 1.3 1.5
_[]l+§( +Z( ]1—[("'5( +§( 1K;. (1.3)
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In the last step we used the idempotenz of (K;)? = 1. The result of (1.3) can be compared
with the series expansion of cosh(x) and sinh(x):

Yre™ 1 1
cosh(x) = =1+=—x’+—x*+... (1.4)

2! 4!

r_e™* 1 1
sinh(x) = =X+ =X+ =x+.... (1.5)

3! 5!

This results in

exp(—(Kj) = cosh(-1 —sinh(-Kj. (1.6)

This result is compared to A. If we look at the upper left corner of the matrix we can see
that

Y —yB)_[cosh{ —sinh{ (1.7)
-y vy ) \-sinh{ cosh{ ) '
By comparing the elements of both matrices we find

Y =cosh{, 7yp=sinh( = [ =tanh(. (1.8)

The other two matrices K> and K3 the describing matrices for a LORENTZ boost in y- and
z-direction, which can be written in the following way

0 010 Yy 0 —yB O
o 10 0 00 10 1 o0 o0
y—direction K= 100 ol =>A= 60 7y 0 (1.9)
0 00O 0 0 0 1
0 001 Yy 0 0 —yp
o 100 00 10 10 O
z—direction Kj3= 00 0 ol =>A= o 01 0 (1.10)
1 000 -y 0 0 vy

For a boost in a general direction v = (vy, v2, v3) = B = (B1, B2, B3) the rapidity § = ({1,{2,(3)
and the K-matrices K = (K3, K», K3) also become vectors. In fact, the vector of rapidity ¢
points in B-direction. The vectors can be normalized

. ¢ . B ) 3
=2 =f=" = artanh(|8]). (1.11)
¢ 7l B B e ]
The LORENTZ transformation A can now be written as
A =exp(—¢-K) =exp (—%artanh(ﬁ)). (1.12)




First Exercise sheet Particles and Fields

Exercise 3: Verify that the matrix A given above satisfies the relation
8uv = S NS A} (1.13)
where the metric is g = diag(1,-1,-1,-1).

Solution: Lets first solve the task by using the matrix notation of the LORENTZ transforma-
tion. Because of (AT)IYt = AZL the right hand side of (1.13) can be written as

(AT} gea Ay, (1.14)
——
81(V
where Oy, can be expressed as a matrix multiplication
1 0 0 0y -yB OO
10 -1 0 Off-yp y 0O
“%=lo 0 -1 ol 0 o 1 0| (115
0 o 0 -1 0 0 01

Then the whole matrix multiplication can be performed by multiplying the transposed LORENTZ
transformation on the left to ©.,

Yy -—-yB 0 0 1 0 0 O

-y vy 0 0 |10 -1 0 o0
0 0 10 Ov = 0 0 -1 0 (1.16)
0 0 01 0 0 0 -1

Another way to show this relation is to perform the summation of the coefficients of the
LORENTZ transformation

3

SANSAY = goo ASAS + gr1 AL AL + 8o AL AT + g3s AS A, (1.17)

The indices y, v can be chosen freely (4, v =0, 1,2, 3). The sums can be calculated seperatly:

b

01

AT
B AT
Y=ol T=T-Yeo

33

This actually results in g,y .

31 32 33
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2 Second Exercise sheet

In general the Euler-Lagrange equations of motion for a generic action function S[®], given
by

S[®] = / d*x L (®,0ud). 2.1)

where £ (®,0u®): Lagrangian density which describes the field theory, are given by

(aﬁ)_a (ai)_o 2.2)
a0 ) Maoud) =" '

Here ®(x*) = ®(t,x) and Ou = %.

Exercise 3: Use the Euler-Lagrange equations to derive the equations of motion for

a) Maxwells electrodynamics,

1
L= FFW = JHA, 2.3)

b) The theory of a complex Klein-Gordon field,
L= 0up*) 0" p) - m*Pp* o, (2.4)

where ¢ = %(([)1 +1i¢2), 12 € R. Show that the equations of motion can also more
conventiently be obtained if ¢ and ¢* are considered as independent fields.

¢) Schridinger theory,
1 — —
L=yrioy— %(Vu/*) (V)= V(x)y* w. (2.5)

Use the same trick as in b.) and consider v and y* as independent.

a.) Solution: For the derivation of the equations of motion we use the general relation

aaaAﬁ
=676". 2.6
00,4, TP &9

Now we can write the Euler-Lagrange equations as

0L 0L
=0,
0A,  10(0,A))

With F,’LV = a”AV - a\/AlJ. (2.7)

First we rewrite the Lagrange density in terms of the generalized vector potential (assuming
a flat space time with n®/ = g@b)

1
L= —Zg“’“‘gﬁv (0uAy —0yA) (0aAp—0pAd). (2.8)
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At first we compute the derivative of the lagrange density with respect to 0, Ay

0Z 1

= — PV 0, A, —0,A)(0qAs—05A
G(OKAA) 4 6(6KA,1)[( uly v ,u)( allp B a)]
1 ap,.pfv
=—— 0yAy —0yAy) ——— (04 Ag—08A
4” n [(ﬂ v v ﬂ)a(aKA/l)( allp p a)
0qAg—0pAg) ——(0,A, —0,A,)]. 2.9
+ (0q B B a)a(aKA/l)( pily v p)] (2.9)
We can now use equation (2.6) for the derivatives
——— (0, Ap—05A,) = 5X6% — 5551, 2.10
a(aKA/l)( a ﬁ ﬁ CK) a ﬁ ﬁ a ( )
which leads to
0L L b (0, Ay - 0y A B6S — 5551 + (0 Ag — Op Ag) (5567 — %6
O(OKA;L)__ZU N 10 Ay =0y Ap) (04 g9 o) +(0aAp—0pA4)(0,0), —0,0))]
| — —_—
=Fuy =Fyp
1
— _Z [(nkpn/lv _ nﬂtpnkv) F,uv + (nkanitﬁ _ nlanxﬁ)Fa’B]
:_i(FK/l_FAK+FKA_F/1K)
:_FK/‘L
A
Oy ——— = =0, F*. 2.11
= 30 A Kk (2.11)

By using that 0.2 /0(Ax) = —J* we can write the equation of motion as

J< =0, F | (2.12)

b.) Solution: % canbe rewritten in terms of ¢, » as

1 1 1 1
L =2 0uPp1) (0" p1) = S P] + - Ouch2) (" pa) — S m*
= (1,041, P2,0uP2). (2.13)
—— e N——

e.o.m. €.0.m.

The equations of motion (e.0.m.) read

0L -0 0L =0 (2.14)
by 0(0yp1) ‘
0% 0%

— Oy =0. 2.15
90, 2 6@,00) (2.15)
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As was done in the lecture we get

0L _ g, 9% __1 [(0up1) 1))
P b 0@yp2)  20@vp1) " ' '
_1' VAl L K
=3 ¥6H(6 ¢1)+(0u¢1)a(av¢l)(0 ¢1)
171 a(ap(pl)
_1lav 1P
2|0 OPIGE 5
1
= 5 av('bl + (ap(/)l)ﬁg
1
=S[00 +0" 1] =0"¢n. (2.16)

From both ¢, and ¢, this results in the Klein-Gordon equation

O+m*)¢p1=0, ([O+m*¢p,=0, where=03,0". (2.17)

c.) Solution: Here we consider ¥ and w* as independent. The covariant differential is

22220 o8
H=oxr  \ot'ox' oy’ oz) '
Then, the Euler-Lagrange equations of motion read
0« 0 o 0%
-0, -V——=0 (2.19)
oy 0(0,y) o(Vy)
0 - 0%
—-V———=0. (2.20)
oy o(Vy™)
Thus, for equation (2.19) and (2.20) we find
0L v, 2 =iy” 9L S (2.21)
oy " 00y) CaVy)  2m '
= —yV(x)+i0y 9L —L(ﬁw) (2.22)
Hence this leads to
. * 1 * *
0¥ = —Ay" —y* V(x) (2.23)
) 1
i00¥) = —o Ay +yV (x). (2.24)
Exercise 4: Consider the following Lagrange density (Proca theory)
1 1
L == Fu P+ EpzA”A” —JHA,. (2.25)

a) Derive the equations of motion.
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b) Which condition hast to be imposed on A, in order to maintain current conservation?
How does this simplify the equations of motion?

c) Consider the static limit, i.e, A, becomes independent of time. Let the current be given
by a point charge ], = q5(3) (x),Ji = 0. How does the static potential Ay look like? Inter-
pret the quantity u in the light of this result.

a.) Solution Using the Euler-Lagrange equation we get
A 0%
-0 =0
p2A* = J* +gFP =0
PP A% +0gFPY = J. (2.26)

b.) Solution Normally y = 0. This leads to a gauge symmetry
= L(A,0mA) = L (A, 0mAp) (2.27)
Here we have u # 0. The continuity equation yields

00 )" =0,0+V-J=0= P05 A% +0,05FP
0
0= 20, A%, (2.28)

The version of Maxwells equations with mass p the gauge symmetry is broken. We have to
stick to the Lorentz gauge.

c.) Solution: We can use the result of b.)

0,A" =0=0,F" =0,[0" AY — 0¥ AH] =0,0"AY —0"9,A*
=0
=[A". (2.29)
The equations of motion then read
OAY + A" = JV. (2.30)

Now we use the Jy = g6® (x). In the static limit we get

Ay =Au(x)=>UA, =0ALx)
= 0,0" Ay (x) = V2 Ay (x). (2.31)

Therefore we get

V2 Ay + P Ay = . (2.32)
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The fields generated by a static charge are spherically symmetric. That means Ay(x) = Ay (7).
Then we can write the Laplacian in spherical coordinates:

L) 9 (20400} 20y =
(rz)ar(f P ) W= Ag(r) = g5(r). (2.33)

We assume that the solution is

Ao(r) =0 (2.34)

10
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3 Third Exercise sheet

Exercise 7: From a pragmatic viewpoint, functioal differentiation can be defined by the
conditions that the algebraic rules for standard derivatives apply,

(Filg] + B2 [¢]) = Fi[¢] + B¢, (inearity)

5 (x) S (x)

— (RQIF(¢]) = Fi [¢]

bp(x)

F[¢p] + Fo[p) ——F1[¢], (Leibniz rule) (3.1

9 5
5p(x) dp(x) S¢p(x)

where F;[¢] are functionals of ¢, and that additionally we have:

5</>( Sh(x) =8P (x= ). (3.2)

Verify that

5 [, )
o / dPxp)J(x) = J(),

560 exp (/dDmp(x)](x)) =J(y)exp (/x¢(x)](x)). 3.3)

Solution: We can use the Leibniz rule and change integral and derivative to show that

0 0d(x) 0J(
—[dadP = / dPx = / dP
5<P(y)/ * P x) op(y )]( 0+ *p) ()

= / dPx8(x—y)J(x) = J(y). (3.4)

The second relation can be shown by rewriting the exponential function as its Taylor series
expansion

0 D v = l D )n
500 exp (/d x(p(x)](x)) 500 ;0 - (/d xp(x)J(x)
6

I
— =

p( decb(x)](x))](y) (3.5)

11
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Exercise 8: Given a classical action S for a field ¢(x) in spacetime. We can formulate
Hamilton’s principle with the aid of the functional derivative:

OS] _
0p(x)

0. (3.6)

Show that for actions of the type S[¢] = [ dPy £(¢, 0u¢; y), we can obtain the Euler-Lagrange
equations as discussed in the lecture.

Solution: We can use the action principle §S[¢] = 0 to obtain the Euler-Lagrange equa-
tions

5] / o5
0= - [ dPy—2 (¢, 0,¢;
5¢(0) Yoot~ Poudiy)

_ / 40, [0¢W) 0L 6@uply) 9L
Y1spm 0 8p(x) 00,px)

0«
= [ dPy|6P(y-x +0,6P( —x)—]. (3.7)
/ Y12 T %00 T Y T 86,000
We can now use integration by parts to bring the derivative d,, to the second factor
0« 0« 0«
= + [ dP1ya,6P( —x)——/dD 5PNy -x)0y———. 3.8
() / Yo T 56,4(0) Yo 56,4

ov

~ J
-

=0

The integral vanishes, because we assume that x is not on the boundary of the integration
volume.

0& 0&

0=——-0,—. 3.9
op(x) F00up(x) 69

Exercise 9: For a classical field ¢(x, t) with an associated canonical conjugate momen-
tum density n(x, t), we can define the Poisson brackets analogously to classical mechanics.
Let Al¢, ] and B[¢, ] be two general phase space functionals, then the Poisson bracket in
d = D —1 space dimensions is given by (we ignore the time argument ¢ in the following for
simplicity)

{AB}'—/dd ( 5A 8B A 4B 5.10)
2= ] S\ Se@ onz)  on2) 60()) '

a) Verify the fundamental Poisson brackets
{p@x), oM} =0, {n@),7(M}=0, {px),7(M}=6"x-y). (3.11)

The time evolution of the field and the momentum is generated by the Hamilton func-
tion H according to the canonical equations of motion

$(x) = {px), H}, (%)= (n(x), H}. (3.12)

12
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b) Compute the equations of motion for Klein-Gordon theory with the Hamilton function
1 -
H= /ddyjf(y) - /ddy 5(712 +(V)? + m2¢2) (3.13)

where /€ (y) is the Hamilton density.

a.) Solution:

[ a0 5o S Sp)|
{cp(x),¢(y)}—/d Z(acp(z)}%(z) e &p(z))_o (3.14)

nx),x(y} = [ d%z on(xf only) _dmlx) on( =0 (3.15)
{ »}

(z) 6m(z) On(z) 562

Spx) Sn(y) Spuf Sn(yl (w

{(p(x)’][(y)}:/ddz( - )6 (x_y)
5¢(z) 667(1(z)) 57(2) 56(2)
=0(x—-z)=0(y—-z

:/ddz5(x—z)6(y—z) =6(x—y). (3.16)

b.) Solution: First we introduce some useful relations concerning Poisson brackets:

{A,BC} = {A, B}C + B{A, C} (3.17)
{A, B} =2B{A, B). (3.18)

Lets first calculate the time derivative of ¢ (x)
: d 1,
dx) ={px),H} = /d y{d)(x), 7 (y)}
1
49 / dy2n() {90, 7}
= /ddyn(y)é(D) (x-y) =n(x). (3.19)

We can compute the second derivative of ¢p(x) by deriving the first derivative of 7 (x)

1 . 1
(x) = {n(x), H} = / ddy{ﬂ(x), E(ch(y))2 + Emzcb(y)}

o [ty

We can pull the derivative out of the Poisson bracket and use its anti-commutating proper-
ties {A, B} = —{B, A}

(3.20)

1 1
E{n(x),0i¢(y)}(20i¢(y)) + E{n(x),</)(y)}2m2</)(y)

= /ddy [-0:6P (x - y)0:p(y) - m*6 P (x - y)p()]. (3.21)

13
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We can again perform an integration by parts and transfer the derivative of the Delta-function
to the second factor

(x) = / d?y [+6P) (x - y)(3;0;0(3) - m*6'P (x — y)p()]
= [(0,)% - m?1¢(x). (3.22)

Now we can express the second time derivative of the field ¢(x):

Px) = [(0:)* — m*1¢p(x)
= [(0)* - 0)* +m*1p=0
= [0+ m?]¢p = 0. (3.23)

14
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4 Fourth Exercise sheet

Exercise 10: Consider a classical field theory which is invariant under translations x, —
Xy, — ay. The corresponding Noether charge is given by the 4-momentum of the field ¢,

pH = / d3x Mo ¢ — g"°2). (4.1)

Show that the Noether charge is also the generator of spacetime translations, i.e., show
that

5¢ = —ayld(x), PH}. (4.2)

Solution: From the lecture notes we deduce that under infinitesimal spacetime transla-
tions

Xy — Xy —ay, G&x)— P (0) =P(x—a) = px) — a 0" Pp(x)
=p(x) +0¢p(x) with SP(x) = —a,d0*p(x). (4.3)

First, let us look at the Oth component of the Noether charge

PO:/d3x(H¢'>—5£) :/d3xJ£: H (4.4)
From Hamiltons equations of motion we obtain the evolution equation generated by P° as
¢ =0"p = {¢, H} =, P}. (4.5)
For the spatial components (i = 1,2,3) we use g'° = 0 to find
Pl = / d3x 110" . (4.6)
Then, the Poisson bracket evaluates as

{<P,Pi}=/d3y{<,b(X),H(y)0i<,b(y)} use {A,BC}=B{A,C}+{A B}C

= / d3y{p(x), I} p(y) + (P(x),0 Gy TI(y) = 8 P (). 4.7)
6(x-y) =0

Now, combining equations (4.5) and (4.7) leads to

B, P =0tpx) = —a o), P 5. 4.8)

15
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Exercise 11: use Noether’s theorem to construct the (canonical) energy-momentum ten-
sor for the classical electromagnetic field from the Lagrangian

1
g = _ZFlquIJV, F,UV = auAfv —OVAN. (4.9)

Convince youself that this does not result in a symmetric tensor, i.e., TH' # T'#; also the
result is not gauge invariant. A symmetric gauge-invariant tensor can nevertheless be con-
structed by adding a term of the form

THY = THY 4 9, K™Y, where K™Y =-KMV. (4.10)

The anti-symmetry of K* with respect to its first two indices guarantees that Noether's con-
servation law still applies, 0, T"" = 0. Show that this construction with K A = FHA AV Jeads
to the desired (symmetric, gauge-invariant) result. Show also the components are related to
standard quantities, such as the energy density e = T = 1(E? + B?) and the Poynting vector
(momentum density) S = E x B, where S' = T°'. (Hint: for the last step, use E' = —F% and
glikBk = _Fij). Also show that T*" is traceless.

Solution: In the lecture we defined the canonical energy-momentum tensor as

v _ 0L
3(0,)

"p-g L. (4.11)

Then, using ¢) — A, (x) we can find the Maxwell energy-momentum tensor

0L
2% _ 0’ A, — otV p
Maxwell a(a“AA) A8
CID _prdgvay) - gt
1
g P FH G, A0 + 8" FE AT, (4.12)

Maxwell*
Under gauge transformations
Ay(x) — A;t(x) = Au(x) +0uA(x), (4.13)

the energy-momentum tensor changes as
v TUA AV Al 1 Wl Ak
" =-F*"0 A;L+Zg F F™". (4.14)
The F,, tensor is actually gauge invariant

Fj, =0y A, —0vA, = 0u(Ay+0yA) = 0y (Ay +0uN)
=0y Ay — 0y Ay +0,0,A—0,0,A. (4.15)

v~

Fuy =0

16
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Then, equation (4.14) can be written as

1
T = —FFOV[ Ay + 0, A] + 2 g" Fy FX

1
= ;8" FncF!* — FM@" A7) - FM(8"0, ). (4.16)
Tl\‘jliwell breaks gaugg invariance

Now, consider the modified energy-momentum tensor from equation (4.10). Note that the
following relation holds:
0, TH =0, ThY  +0,0,K* =0. (4.17)

N H Maxwell

-0 =0

We can show that the second part vanishes by using the anti-symmetry of K**¥
0,0, KM = 0,0, KM = 0,0, KM = -0,0, KM = 0. (4.18)
If we now choose KMV = FHA AV then

UV VY UA AV
T _TMaxwell+6/1(F AY)

with 9, (FFAY) = (0, F*Y AY + F*4 (9, AY)
——

=0

1
= Zg’”F;LKFM — FM(@Y Ay + F*(9,4")

1
= g Fa FM + FMAE Y

1 A
= 28" EacF" + g Eyp P = T, (4.19)

Since Fl’w = F,,y is gauge invariant, T'Wv = T is also gauge invariant.

Now we can show that the energy density relation 7% = %(E2 + B?) holds. The following
relations hold:
F=-E, FY=F/'=-F;=-F, FJ= —Fl.j =F;j=—¢;jxB". (4.20)

1

Than the zero component of the energy-momentum tensor is

. . 1 . . Ny
TO=F" F) +-g%(Fy; F* + FioF"° +F;; F)
— 4 ~ ~——
FOi _FOi _FiOFiO
:E’E’+Z(—2E’E’+F”F”)
Voici 1 ijkpk ijipl _ 1 2 p2
:EEE +Z€ B e/'B :E(E + B“). (4.21)
Finally we can show

70 = F 'R0 = —Ekekiigl = ¢'M g* B/ = (Ex B)' = §'. (4.22)

17
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Exercise 12: Consider the action,

S= / ( (amp)(a“(p)——m @° ——</>P (4.23)

with some power p for the nonlinear term. Study the behavior of the action under scale
transformations (dilatations)

x—Ax, ¢x)—A1Pop(A7x), A>0, (4.24)

where D is a scaling exponent (dilatation weight) for the field ¢. Under which conditions is
the action scale invariant? Determine the corresponding conserved current using Noether's
theorem.

Solution: Using the transformation of ¢(x), the derivative transforms as
Oup — A7 P10, (4.25)

Then, the transformation of the first part of the integral reads

/ d4x%(0u¢)(x))(0”¢(x)) — A4 / d*x A72P72(9,,p(1x)) (0" P (Ax)). (4.26)

This part is invariant for a scaling exponent D = 1. Then the other parts of the integral be-
come

/ d4x(%m2(p2(x)+%<pp(x))—> / d4x( %/14‘2m2¢2 + %/14‘%” ) (4.27)

\ ~/ (.

-

invariant for m=0 invariant for p=4

The invariant action can then be written as
a (1 A 4
S= [ d*x 3 Oup) (0Hp) — Z(,b : (4.28)

For the Noether current we first need to calculate 6¢. For a small scale transformation A =
1 + ¢, the field transforms as

~LE) e Lpu with w=
¢ )L(p A _1+€¢ 1+

e+0(€?)
e=0

+¢'(u)

6—0

=p(x) + o )2¢(1+8) o
= p(x) —ed(x) —€x"0yP(x). (4.29)
50

- sw
_1+€(/>u

18
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Now, the change in the Lagrange density can be calculated as

5% = 5(% (0 p) (OH¢p) — %d)‘*) = ((au¢) (0"6¢) - %df‘ﬁd))
= —5(2((3“4)) (0" ¢p) + (04 ) (0,0 ¢p) — ;¢3x"/6],,,¢ - 4%4)4)
= —5(43 + xav(% (0,¢) (0" ) — j,(l’l)) =—c(4L +xY0,%L)
=-£0"(x, %) =0,K" with K'=-ex"%. (4.30)
Then the Noether current is determined by

JH=TI*6p— K* with KH=-ex"¥ and 6¢=—e(Pp(x)+x"0,¢p(x)). (4.31)
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5 Fifth Exercise sheet

Exercise 13: Consider the Lagrangian for a triplet of real scalar fields ¢, (a = 1,2,3), defin-
ing a classical field theory with rotational O(3) invariance in field space,

1
£ = 5@#’”) @ ) — V(%P (5.1)

a) Verify that the action is invariant under infinitesimal rotations in field space, which
can be written analogously to rotations in coordinate space as ¢% — ¢p* + 0™l e,
where /P is a unit vector defining the rotation axis, and 0 < 1 is an infitesimal rotation
angle.

b) Compute the Noether current and the Noether charge.

c) Verify the conservation of the Noether charge explicitly by using the equation of mo-
tion.

Solution a): The first part of the Lagrangian transforms as follows:
0,07 (0Hp™) —1(0,p™) + 0™ 18, 1[0 ™) + 0eP¢ WP oF p°)]
=[0, 0" %) + 207 AP (8,,6%) (6" ) +6(6?)]. (5.2)

=0 D;Hc)

The expression ¢p“¢p* transforms as

¢a¢a _)((p(l +6£ab0ﬁb¢a) ((/)(l + Hg(leﬁb(pC)

:¢a¢a+29£abcﬁb¢c¢c +@(92) (5.3)
=0 (a+~c)
= V(™) =V (p“p?). (5.4)

Thus we find that £ is invariant under infinitesimal rotations.

Solution b): From the lecture we can calculate the Noether current as

0%
JH = op®— KH
00,¢p° =

= M p 0L AP P = B(0H ™) (71 x P) . (5.5)

The surface term K* disappears for an invariant Lagrangian, since 6 £ = d,K*. In the follow-
ing we drop 6 by rewriting the Noether current J# = 0 j*. The Noether charge is then given
by the integral of the zero-component of j* as

Q:/dsxjoz/d3x(60(p“)(ﬂ><</>)“:/d3x£“bcgb“ﬁb(pc. (5.6)
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Solution c): To determine the conservation of the Noether charge Q, we compute the
equations of motion

0S8 A 0%
=0 —0y =
o4 04 000,99
ov
6¢a ——
=0
oV a(pbe?
& — @"¢") O¢p® = 0. (5.7)
a((pb(pb) a(¢a¢a)
The time derivative of the Noether charge is
. 0 . .. Lo
0=— /d3x£abcﬁb¢)a¢c — /d3x£abc¢a¢cﬁb +/d3x£abcﬁb¢a¢)c. (5.8)
ot —_——
=0 (a<c)
The equations of motion can be decomposed as
0300+ V] =0 o 5= 030 - Vg, 59

Inserting them into Q leads to

14 14 —

=0 (a<c)
Zeepb 0;pM¢°| - / d*xe 9,9 (0;¢) 1 = 0. (5.10)
=0 o =0(a<c)

Exercise 14: Consider an almost O(N) invariant scalar model with Lagrangian

1 1 p)
&= z(apcp“) @ ™) - (—Euch“gb“ + E(([)a([)“)z —8V, (5.11)

-

V(e

where a = 1,...,N and 6V is a potential term that breaks O(N) symmetry explicitly. Upon
spanning ¢* by a parametrization ¢ = (n*,X), wherei =1,...,N—1, 0V takes the form §V =
—hZ with a positive constant parameter h > 0.

a) Determine the position of the global minimum of the potential to first order in h.

b) Verify that the would-be Goldstone bosons acquire a mass. Compute the mass to first
order in h.

Solution a): We start by writing the potential with the parametrization ¢ = (7', %) as

1 1 A
V=-—= 2.2 — 2§2+_ 2+§22_h§_ 5.12
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Schematically, the potential term §V tilts the potential towards the positive X axis. Thus, the
global minimum is at 7' = 0 and at a finite Xy. Hence, the global minimum corresponds to

oV

0= —
0

A
o (—zg—uz)zo—hzo. (5.13)
JTiZO,Zo 3'

2
h=0 \/6%. (5.14)

Now we make the ansatz that for nonzero h the solution Xy can be written as

In case of h = 0 this yields

S0=21"+ ah. (5.15)

Inserting this into the above relation (5.13) yields

Al 6u? 62 6>
|2 A O op~ 2. |/ 2% _
0=|-u +3!( T2\ ah+0(h?) i +0(h)| - h. (5.16)
This can be solved for a
o T a2 '

which is now a global minimum to & (h) order.

Solution b): For this discussion we again define X = % + o(x). The potential V' can then
be written as

1
V=—o

zuznz — %/,LZ(ZO +o(x)?+ %(nz +(Zo+0))2 - h(Zo+0(x). (5.18)

Now, the pseudo-Goldstone boson aquires a mass term m?2 which is quadratic in the 7’ field.
Neglecting all other terms leads to

1 21
V= —E,uznz + anig +0(n*,n'o, n?

7)

2
2 2 2

Calculate: Z(Z): ou + L :GM + 61 h +
A2u? A A u?

1 21 62 21 |6u2 h
—plm? i s L—ﬂ2+@’(h2,ﬂ4,ﬂ40,ﬂ20)
2 R G T

1
:Eh —7 :Emin with mizh —_—. (5.19)
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Exercise 15: Consider the action for a free O(N) symmetric field theory,
1
£ =20, (0" p"). (5.20)

a) Convince yourself that the theory becomes interacting by simply imposing the con-
straint ¢“¢p® = 1. For this, use the parametrization of exercise 14, eliminate the X field
by the constraint, and compute the leading interactions for small n* fluctuations.

b) This model is called a nonlinear o model. Construct a suitable limit procedure such
that the nonlinear model arises from the linear o model (of exercise 14 with 5V =0).

Solution a): With the constraint ¢%¢* = 1 and ¢ = (', %), the X field can be written as

2@ =1 > T=v1-(i)? (5.21)

1
\/1-— (n-i)z

>0,Z=- (o). (5.22)

Then the Lagrangian transforms as

<= %(Oun’) (0*m) + %(OHZ)(O“Z)

1 1 (7w0,7)*

= p SR
2((3“7:)(6 ) + 5 12

1 1
=5 0,m) (0" m) + E(ma,izr)2 +e. (5.23)
Solution b): We start with the Lagrangian with a potential (with §V = 0) previously given
by (5.12)

1 1 1 1 A
L =5 0um)(@"m) +2(0,2)(0"D) + 5;127[2 + 5;1222 - Z(7:2 +32%)%. (5.24)

J/

Again we demand the following

ov 0 > 3ooy /K (5.25)
- = 0= —_—. .
02 JTiZO,ZO /1
Then we find with the given constraint ¢%¢* =1
PPt =1=Z*+x%| =3 = A=6u’ (5.26)
min min
Now defining X~ = v + o(x) we have
1 1 A A 22
V= —Eluznz —p?vo — E,uzaz + En‘l + 5(41/03 +6v°0% +4v°0 + o) + Inz(v +200 +0%)
1 A Ay A4 A 4 A A '
= —(—uz +=v)o? + =t + Zot+ Zvod + Sunto + =nfo’. (5.27)
2 2777 T4 T4 6 6 12
mass (;E sigma intereTction
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Then, using (5.26), the sigma mass can be determined to be

A 6>
mi:—y2+§v2:2u2 with v:%:l. (5.28)
With the constraint 72 + X2 = 1 and for 72 < 1, the ¢(x) must be very small o(x) << 1. For a

small width o, the curvature of V(Z) has to go to infinity

V')  =ms— oo (5.29)
Z=v
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6 Sixth Exercise sheet

Exercise 16: The nonrelativistic version of scalar QED,
1 v * e 1 * *
:f:—ZFuVF“ +y 10t1//—%(D1//) Dy - V), (6.1)

where D =V —iqA, can be used to describe superconductors. Here, the complex scalar field
v should be thought of as the wave function of the coherent bosonic state that describes the
Cooper pairs; hence, its charge is g = 2e. The model has a local gauge invariance.

a) Local gauge invariance also implies a global phase invariance of the scalar field, v —
e '%y. Compute the Noether current J* of this symmetry. Verify that the spatial com-
ponents (up to the infinitesimal symmetry parameter «) agree with the Cooper current

. L * _ *
=3 m((DVJ) v —v Dy). (6.2)

b) Assume that the potential V inside a superconductor has a minimum at a finite field
amplitude at |y| > 0. Verify that the generic form of the wave function in this ground
state then is w = \/|ple'”, where p agrees with the Noether current density up to the
infinitesimal parameter and ¢ = @(x, t) is an arbitrary phase.

c¢) Compute the Cooper current for this ground state of a constant density p = const. and
verify that the maxwell equation V x B = j implies the London equation

vi- Lp 6.3)
AL

Compute /1% and convince yourself that Aj can be interpreted as the penetration depth
of a magnetic field into a superconductor, thus explaining the MeilSner-Ochsenfeld
effect. How is the penetration depth related to the photon mass?

Solution a): The global phase variance for a small angle a can be written as
v —e %y =y —iay = Sy = —iay (6.4)
v —eyx =yt +iay* = Syt =iay”. (6.5)

According to the lecture, the Noether current J# = (p, J) is given by

JH = 0L oy + 0L oy” (6.6)
8(0Hy) v 00,y v '
The zero component can be calculated as
__9Z oy + <z ovt =au” (6.7)
P 0(0:v) v 0(0:y™) v vy .

N e N N e’
=iy* =-iay =0
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The other components are computed as

Jo0L s 0L
~000;w) v 000, y*) v

——

L0(DJ w) 1 : . o 1 .
:__J ———(DJun* Jar—ia Al = ———(DJyN*
— (D) o) = 2m W a(amww igal) = -—(D'y)
hel

= ii[(wa)*w —y* (D)l 6.8)

2m

Solution b): Assuming that V(¢ *w) has a minimum at ¥ : || > 0, we find

lwol? = p>0. (6.9)

Then, for the ground state, we require |y (x, t)| = /p. Due to local gauge invariance y —
e ™0y then we have the freedom to add a phase term

Wol(x, 1) = /pe¥™D, (6.10)

Solution c): The Cooper current for the minimum v (x, t) for p = const. reads

:—[V voe 9)/pe? - /pe ¥ (Vy/pe?) +iqgAyty +iqAy*ty
=— - . 11
m[V</> qAl (6.11)

From Maxwell’s equations (V- B) = 0 and (V x B) = J we find

Vx(VxB) VX]_p[VX(V([)) q(VxA)] ——B 6.12)
— T
V x (6 x B) - 6(6-3) _AB. 6.13)
NS

Combining both yields then

rq
m

AB =—B London equation, (6.14)

where A1; =, /22 is the London penetration length. In order to justify the interpretation of
a0 p 8 J P

A1, we consider the boundary of a super conductor. Outside the super conductor B propa-
gates in an arbitrary direction |B| = | By|. In the z-direction of the super conductor B should
satisfy

O p_lp o Bopet 6.15)
_— = — = e . .
022 22 ’
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From here we can see that A; describes the depth of penetration of the magnetic field in-
side the super conductor. The magnetic field depletes quickly inside the super conductor.
The conservation of magnetic flux in combination with the London equation leads to the
Meifsner-Ochsenfeld effect

(/)B:ff Bds= ¢p=0. (6.16)
Surf.

The magnetic field lines are ejected from the super conductor. The conclusion holds true
since the magnetic field can only penetrate the super conductor until the penetration length
but the same number of magnetic field liens that enter the super conductor leaves as well.

Finally, we relate A; with the photon mass

1 .
L=~ DY) DY) +...

1 2 2

=—— A +...
—d’p

e o 2P 4 (6.17)
2m 4 A m )LL' '

The photon mass corresponds to the inverse penetration length. This means the Mei8ner ef-
fect can be explained by assuming that photons inside a super conductor acquire an effective
mass. This is linked to the modified Maxwell’s equations, i. e. Proca theory.

Exercise 17: Consider an O(N) invariant scalar model with Lagrangian

1 1
£ = E(Gudﬂ)(a"(p“) -Vip), p= 5</>“¢>“, (6.18)

where a = 1,..., N. Given the potential with some minimum pg, any concrete parametriza-
tion of py in field space is legitimate and physically equivalent. Thus, the eigenvalues of the
mass matrix mfl b= 02V 10¢p*d¢? can be written in terms of O(N)-invariant quantities. Diag-
onalize the mass matrix in terms of such invariant expressions. The final expression should
also hold for the case pg = 0.

Solution: Let us rewrite the masss matrix as follows

2 2 2
iy SV 0 (00 0V) D AV op dp £y,
b opadgb  ogb\apa dp

T a¢pbaga dp a2 dpb dp?
Let us calculate the different derivatives separately:

op (3¢ ") Y veab  Leav b a
6(/)“ = 6(/)“ = E(P 0’ + 56 (P = (P (6.20)
Op 9 b
= a) = 599 6.21
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The the mass matrix can be written as

dv d?v

2 ab a b

m,, =—086%" + —. 6.22
ab d ) (/) (/) d ,02 ( )

mib is the matrix we wish to diagonalize and determine its eigenvalues/eigenvectors. Let us

compute

3

d?v dv
2 4b_ > YV 4ra bbb VYV ia
(lb(?b - dpz()b (P (P +dp¢)
2p
=[2pV"(p) + V' ()19 (6.23)

hence, ¢ is an eigenvector of m?>, with eigenvalues A =2pV" (p) + V' (p).
Let us now introduce a new field parallel to the field ¢ as
a b pb

a ¢ . X'
= _— h =
() X”Icpl with ¥ o]

:(p_a(p_a: %(Pugbb)(b
lpl1pl  Lip)?
L awl b ab. b

For a generic field vector y, the perpendicular part can be extracted via

— =1 — _ ab _ 5ab 1 ¢a¢b
Xi=x-Xxi1=lx-pix=0Q-ppdx=p1x = p] = —ET (6.25)
The p, and pj matrices fulfill the following relations:
Lo g pPpC 197 pg
2yab ab _bc ac
— - == = 6.26
PP =PPr = 2 2 P (6.26)
(03 =... = p4. (6.27)
Furthermore, they have the following properties:
1% b b pnc 1 0%°¢ 1 d%p°
plzlszﬁ)_c:_(:b(p (5bc_¢¢):_¢(p __¢)¢) -0 (6.28)
2 p 2p 2 p 2 p
pi’?+pl¢ = 8. (6.29)
We can do this to construct a diagonalized matrix as
a 0 ... 0
~ 0 E
A=apj+ppL=| p . (6.30)
: .0
0 0 B
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Then we have
P
. _ 0
Ax) = (apy+Bp)(px) =apjx =ay) with x;=|. (6.31)
0
0
A . T
AxL=(apy+pfp)prx) =Borx=PFxL with x,=| . | 6.32)
TN-1
Then we can write equation (6.22) as
=V"(p)2pp{" + V' (0) (0" + p ") (6.33)
=[V"(p)20+ V' (0)Ipf" + V' (p)p . (6.34)
Now, we specify the potential as
1 A A
V(p) = Sy@“¢"+ 1@ ) =yp+ 30°. (6.35)
The derivatives yield
! /1 i /’l’
Viip)=y+ gp, Vi(p) = g (6.36)
We can consider two different cases:
1. Case: y = m2>0 (symmetric)
ovip)  ,0V(p) a
e = 0 = 0 = 0, 6.37
sp ~9 g, T0=9"=0=0 (6.37)
Then the mass of the o and 7 bosons is given as
ma|  ="0)2-0+V'(0)=y=m? (6.38)
p=0
mi| =V 0) =y=m’ (6.39)
p=0
2. Case: y = —u? < 0 (broken)
oV oV 3p?
V) _ paViO) L, 3 (6.40)
0 op A
Then we can again calculate the mass of the o and 7 bosons:
m? =242, (6.41)
P=po
m? =V'(pg) = 0. (6.42)
P=po

We find (IV — 1) massless Goldstone bosons. This agrees with the results in the lecture.

29



Sixth Exercise sheet Particles and Fields

Exercise 18: Consider the action for a complex two-component scalar field ¢p; € C,i = 1,2,

which may be summarized in a complex vector ® = (il),
2
* * /1
L= 0up?) O p) + 1o} i — gucpnz +¢pal*)°. (6.43)

a) Identify the global symmetry group of rotations in the complex field space.

b) For ,u2 > 0, the potential has minima at nonzero field values. Determine this submani-
fold in field space.

c) Select a possible vacuum state ®,. What is the symmetry group that leaves this ground
State invariant?

d) Now expand the field in terms of real fields denoting excitations on top of the vacuum.
Determine the number of Goldstone modes and compare this number to the number
of "broken generators*.

Solution a): Letus replace ¢; € C by real fields ¢% e Rwith i = 1,2,3,4 as

$r= (@ +igD), P = (¢ —igD)

V2 BRI

1 3 .4 A Y (6.44)
b= @ N, 8= 0o,

Then, we wish to rewrite £ in terms of ¢ € R. Note that
1 1
®;pi = p11* +1pol* = 5[@1)2 + (@D + () + (@2 = S0, (6.45)
Now, £ can be written as
1 a a 1 2 pa a A a a2
L = 509" @ PN + S P — (PPN (6.46)

This corresponds to an O(4)-invariant model.

Solution b): For u? > 0, the global minimum can be determined as

OV YY) _ 2 b AL aparin
agh ~ ~ KO 2@ ")
A
— [MZ_Q((I)a(,ba) (pb
min 6 2
= </>6’¢>3=(¢5)2+(¢3)2+(¢8)2+(¢3)2:%:: v. (6.47)

This corresponds to the 3-dimensional boundary of a 4-ball also known as a 3-sphere.
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Solution c): We choose the vacuum ¢ =(0 0 0 v) L ¢§ is left invariant by all the 4 x 4
matrices of the form

0 with 6 : 3 x 3 orthogonal matrices, i.e. 70 = 1. (6.48)

— o O O

0 0O

Thus, there is a residual O(3) symmetry.

Solution d): We do the same as in the lecture with ¢% = (Z), then by rewriting the La-
grangian we obtain:

* 3 Goldstone bosons (massless) 7, i = 1,2, 3, due to the spontaneous symmetry break-
ing

 Massive radial mode m2 = 2u?.

The linearly independent O(4) rotations that do not leave ¢ invariant correspond to those
where the 4th-component is the same with the first ones i. e.

cos¢p 0 0 -sin¢ 1 0 00
1 0 10 0 |0 cos¢p 0 —sing

U=l o1 o | %o o 1 o0
singp 0 0 cos¢o 0 sing O cos¢
1 0 00
0 1 0 0

Us=lo o cos¢p —sing (6.49)
0 singp O cos¢

The three broken symmetry transformation correspond to the number of Goldstone bosons.
We can now introduce the generators of O(4) rotations

0 0 0 -1 0 00 O 0 00 O
0 00 O 0 0 0 -1 0O 00 O
K=o 00 of 25lo o0 o o0 0 -1 (6.50)
1 00 O 010 O 0 01 O
which generate the broken O(4) transformations U; = e%Xi Then,
¢ — (U;p)* "5 ¢+ aK PP & 5 = aK PP (6.51)

with K; being the broken generators.
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