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First Exercise Experimental Nonlinear Optics

1 First Exercise

1.1 Electric Susceptibility for a lossless medium

Show that εi j (ω) is a symmetric tensor for a lossless medium.

Solution: We start by using POYNTINGS theorem of conservation of energy for the elec-
tromagnetic field, which can be written in differential form as:

−∂u

∂t
= ∇⃗∇∇···S + J ·E , (1.1)

whee ∇⃗∇∇ ···S is the divergence of the POYNTING vector (energy flow) and J ·E is the density of
electric power dissipated by the LORENTZ force acting on charge carriers. The term u denotes
the energy density which is defined as

u = 1

2
(E ·D +B ·H). (1.2)

For a lossless medium the dissipation term vanishes and we get

∇⃗∇∇···S + ∂u

∂t
= 0. (1.3)

At first, lets discuss the divergence of the POYNTING vector. For that we use the general rela-
tion ∇⃗∇∇··· (A ×B ) =−A(∇⃗∇∇×××B )+B (∇⃗∇∇××× A)

∇⃗∇∇···S =−E (∇⃗∇∇×××H)+H(∇⃗∇∇×××E )

=−E
∂

∂t
D −H

∂

∂t
B

=−E jε j k
∂

∂t
Ek −µ0H

∂

∂t
H . (1.4)

Now lets calculate the time derivative of the energy density

∂u

∂t
= 1

2

( ∂
∂t

E jε j k Ek +E jε j k
∂

∂t
Ek +µ0

(
∂

∂t
H

)
H +µ0H

∂

∂t
H︸ ︷︷ ︸

2µ0H ∂
∂t H

)
. (1.5)

Comparing the last term of (1.5) with (1.4) shows that the last term vanishes in the summa-
tion. Therefore the sum can be written as

E jε j k
∂

∂t
Ek = 1

2

(
∂

∂t
E jε j k Ek +E jε j k

∂

∂t
Ek

)
= 1

2

(
E jεk j

∂

∂t
Ek +E jε j k

∂

∂t
Ek

)
. (1.6)

The equation is only valid if ε j k = εk j which means that εi j (ω) is symmetric.

3



1.2 Pockels effect Experimental Nonlinear Optics

1.2 Pockels effect

The electro-optical effetct induces birefringence in a crystal (for example KDP with a thick-
ness of d). The resulting phase difference between an ordinary and an extraordinary wave is
given by

∆ϕ= 2πn3
0r63E

d

λ
. (1.7)

1. What voltage/unit length is necessary for a phase shift of π (KDP: n0 = 1.520;r63 =
23,3 pm

V ? Assume a wavelength of 800 nm).

2. Estimate the capacity of the crystal (assume a cubic crystal with d = 1cm) and the
related charging time, if a 50Ω resistor is used. (Relative permittivity of KDP εr = 50)

3. This effect can be used as a fast optical shutter. Estimate the cut-off (maximum) fre-
quency of this shutter.

a) Solution: For a phase shift of π which rotates the polarization by 90°, the Voltage U =
E ·d of the Pockels cell can be calculated by using (1.7).

U = E ·d = λ

2n3
0r63

= 800nm

2(1.520)323,3 pm
V

= 4888V. (1.8)

b) Solution: For the calculations we assume, that the cubic crystal is housed by two metal
plates of same area. The capacity of a plate capacitor is given as

C = ε0εr
A

d
= ε050

1cm2

1cm
= 4,43pF. (1.9)

The charging of the capacitor behaves like an exponential function of the following form:

Q(t ) =U0 ·C
(
1−exp

(
− t

RC

))
, (1.10)

where RC represents the characteristic time for which the charge has risen to (e −1)/e of its
maximum value. Therefore the charging time is identified by this quantity:

τ= R ·C = 50Ω ·4,43pF = 221,5ps. (1.11)

Therefore the crystal/capacitor is charged in less than 1 ns.

c) Solution: Because the capacitor also has to discharge after turning off the voltage, the
actual time it takes for a single cycle in the shutting process is about 1 ns. The maximum
frequency of this shutter is therefore

fshutter =
1

1ns
= 1GHz. (1.12)
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1.3 Birefringence Experimental Nonlinear Optics

However, the power requirement for a continuous operation of this shutter is actually quite
high. The power can be calculated by the energy of the capacitor divided by the time of a
single shutting cycle

P = Q ·U
2τ̃

= C ·U 2

2τ
≈ 53kW. (1.13)

This shows that this high power would heat up the resistor enormously. Therefore it is better
to use lower frequencies of fshutter = 1kHz, where the needed power drops to 0,053 W.

1.3 Birefringence

Answer the following questions for the 4 different orientations of a birefringent crystal (optic
axis in green) depicted below:

a) If the incident light (red) is unpolarized, is it single or double refracted?

b) Is there any phase retardation between different polarization states?

c) Sketch the ordinary and extraordinary light rays inside the crystals!

d) What happens in the 4 different cases if the incident light is linearly polarized in the
plane of the sheet of paper?

e) What happens in the 4 different cases if the incident light is linearly polarized perpen-
dicular to the plane of the sheet of paper?

Solution

OA

o

e

1.) For the first case, the incident unpolar-
ized light is only single reflected, because for
both polarization states (parallel or perpendic-
ular to the optical axis) the polarization sees
only one refractive index. However a phase re-
tardation of the ordinary and extraordinary ray
occurs. If the incident light is linearly polarized
in the plane of the sheet of paper, the polariza-
tion is parallel to the optical axis and thus the
extraordinary beam. For polarization perpendicular to the sheet of paper we get the ordinary
beam. Both beams are not refracted, because they are normal to the crystal.
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1.4 Half-wave plate Experimental Nonlinear Optics

OAo

o

2.) For the second case, the incident unpo-
larized light is only single reflected, because all
polarization states see only the ordinary refrac-
tive index. Every beam is an ordinary beam.
Therefore no phase retardation occurs. Both
polarization states (parallel and perpendicular
to the plane of the sheet of paper) are ordinary beams. This special case only applies for
propogation directions parallel to the optical axis.

OA

e

o

3.) For the third case, the incident unpolar-
ized we have the same scenario as in case 1.
The only difference is, that the optical axis is
now parallel to the polarization perpendicular
to the plane of the sheet of paper. The ordi-
nary beam becomes the extraordinary and vice
versa. There is no double refraction occuring,
however, phase retardation between ordinary
and extraordinary beam still occurs.

OA
e

o

4.) For the last case, there occurs double re-
fraction for unpolarized light. The parts that
are parallel polarized to the optical axis get re-
fracted in the crystal, which leads to a separa-
tion of the two polarization states. There also
occurs a phase retardation between the ordi-
nary and the extraordinary beam, however, it
is not as large as in case three. For a positive birefringence (the polarisation perpendicular
to the optical axis is the fast ray) ne > no the extraordinary ray will be refracted to smaller
angles with respect to the optical axis. Polarization the plane of the sheet of paper is the
double refracted extraordinary ray, whereas the polarization perpendicular to the plane is
the ordinary beam, which is not double reflected.

1.4 Half-wave plate

Birefringent crystals are widely used to change the polarization state of light beams. Crys-
talline quartz SiO2, for example, can be used to change the polarization by exploiting the
different refractive indices for ordinary and extraordinary axis.

a) Calcularte the phase retardation per millimetre for a linearly polarized Ti:Sa-Laser beam
(800 nm), when the crystal is oriented to maximize the retardation!

b) What crystal thickness is necessary to produce a half-wave-plate or a quarter-wave-
plate?
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1.4 Half-wave plate Experimental Nonlinear Optics

c) It the incoming beam is linearly polarized at 30° with respect to the optical axis, calcu-
late the angle at the output of the half-wave-plate!

a.) Solution: The phase accumulated by the laser beam travelling through the medium
can be expressed by ϕ= k(n) ·L. Then we can write the phase per length as

ϕ

L
= k(n) = 2π

λ(n)
= 2πnν

c
= 2πn

λ0
. (1.14)

For crystalline quartz, the refractive indices for ordinary and extraodinary light are

no = 1.5383 and ne = 1.5472 ⇒∆n = 1.5383−1.5472 = 0.0089. (1.15)

The phase difference between the ordinary and extraordinary beam can now be written as

∆ϕ

L
= 2π∆n

λ0
= 2π ·0.0089

800nm
= 22.25π

1

mm
. (1.16)

b.) Solution: For a half-wave plate the phase difference∆ϕmust be equal to π. Therefore
we can rewrite (1.16)

L = λ0∆ϕ

2π∆n
= λ0

2∆n
= 45µm. (1.17)

For a quarter wave plate the phase difference is ∆ϕ=π/2 which leads to

L = λ0∆ϕ

2π∆n
= λ0

4∆n
= 22,5µm. (1.18)

c.) Solution: For a half-wave plate, the polarization is phase shifted by an angle of π.
This leads to the change of the sign of one polarization direction. This can be interpreted
as a reflection of the polarization vector at the optical axis. For an angle α = 30◦ the actual
polarization rotation is therefore 2α= 60◦. This corresponds to the trivial case of parallel or
perpendicular polarization, for which no double refraction occurs.
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2 Second Exercise

2.1 Estimate of nonlinearity coefficients

a) Calculate the corresponding electric field strength necessary to bind the electron in a
hydrogen atom! What intensity is required to reach such a field strength with a laser?

b) Use the Taylor expansion of the nonlinear polarization to estimate the order of magni-
tude for the χ(2) and χ(3) coefficients. Assume χ(1) ≈ 1 (transparent solid media). The
nonlinear terms in the expansion become relevant when the medium polarization ap-
proaches the atomic electric field strength.

a.) Solution: The typical distance of the electron from the nucleus of the hydrogen atom
is given by the Bohr radius

a0 = 4πε0ℏ2

me e2
≈ 1Å. (2.1)

The electric field strength of the proton at the Bohr radius is given by Coulombs law

E(r ) = 1

4πε0

q

a2
0

≈ 5,76 ·1011 V

m
. (2.2)

The intensity can be calculated as the temporal mean of the Poynting vector which results
in

I = cε0

2
|E |2 = 4,4 ·1020 W

m2
. (2.3)

b.) Solution: The Taylor expansion of the nonlinear polarization can be written as fol-
lows

P̃ (t ) = ε0[χ(1)E(t )+χ(2)E 2(t )+χ(3)E 3(t )+ . . .]. (2.4)

If we assume χ(1) ≈ 1 the linear polarization term is of the order of 5.76 ·1011. If the second
order term is of the same magnitude as the linear polarization, then χ(2) must be of the order
of

χ(2) ∼ 1

|E | ∼ 1.7 ·10−12. (2.5)

For the third order nonlinearity term χ(3) is of the order of

χ(3) ∼ 1

|E |2 ∼ 3 ·10−24. (2.6)
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2.2 Focusing of high power beam Experimental Nonlinear Optics

2.2 Focusing of high power beam

Imagine you have 1kHz repetition ultra-short pulse Ti:Sa-Laser (800nm) system delivering
1mJ pulses with a pulse duration of 25fs (intensity FWHM).

a) What kind of lens do you need to focus the laser pulses to an intensity of 1014 W
cm2

assuming a Gaussian shaped pulse and beam (diameter d = 10mm, intensity drops to
1/e2 of its maximum)?

b) What will you do to achieve a peak intensity of 1016 W
cm2 ?

Solution: We can calculate the pulse energy by integrating the intensity over the whole
x-y-plane and time. We then get

E =
∞̂

−∞
P (t )dt =

∞̂

−∞
dt

2πˆ

0

∞̂

0

r dr dϕ I (t ). (2.7)

We can express the intensity of a Gaussian shaped pulse in the following way:

I (r, z) = I0 exp

(
−η r 2

(2w ′
0)2

)
·exp

(
−η t 2

τ2

)
, (2.8)

where η is a variable which differs for various definitions of the pulse length and beam
width

η=


4ln(2) FWHM

4 1/e

8 1/e2

. (2.9)

For the criteria given in the task we get

I (r, z) = I0 exp

(
−2

r 2

(2w ′
0)2

)
·exp

(
−4ln(2)

t 2

τ2

)
. (2.10)

Then we can calculate the pulse energy to find an expression for the intensity I0 in the beam
waist

E =
∞̂

−∞
exp

(
−4ln(2)

t 2

τ2

)
dt

2πˆ

0

∞̂

0

I0r exp

(
−2

r 2

(2w ′
0)2

)
dr dϕ

= 2π
p
πln2

τ

2
I0

∞̂

0

1

2
exp

(
− 2u

w 2
0

)
du

E =
√

π

ln2

τ

4
I0πw 2

0 . (2.11)
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2.2 Focusing of high power beam Experimental Nonlinear Optics

Now we need to determine, how the diameter of the beam waist changes for a lens of focal
length f . For that we assume, that we position the lens in the waist of the Gaussian beam.
Then we can use the matrix algebra to determine the q-parameter in the new beam waist(

1 f
0 1

)
·
(

1 0
− 1

f 1

)
=

(
0 f
− 1

f 1

)
=

(
A B
C D

)
. (2.12)

The q-parameter is defined as

q = z − izR with zR = πw 2
0

λ
, (2.13)

where z is the distance to the beam waist and zR the Rayleigh length. The new q-parameter
for a given matrix can be calculated as

qout = Aqin +B

C qin +D
, qin = i

πw 2
0

λ

= f

− q
f +1

= f

−i
πw2

0
λ f +1

. (2.14)

Now we can use the properties of the inverse q-parameter

1

q
= 1

R
+ i
λ

π

1

w(z)2

⇒ 1

qout
= 1

f
+ i
πw 2

0

λ f 2
. (2.15)

We can compare the imaginary parts to find that

πw 2
0

λ f 2
= λ

π

1

w ′2
0

⇒ w ′
0 =

λ f

πw0
. (2.16)

We can rearrange equation (2.11) to w ′
0 and compare it to (2.16)

w ′
0 =

√
4E

τπI0

4

√
ln(2)

π

!= λ f

πw0
, (2.17)

which leads to an expression for the focal length f

f = πw0

λ

√
4E

τπI0

4

√
ln(2)

π

= π ·5mm

800nm

√
4 ·1mJ

25fs ·π ·1014 W
cm2

4

√
ln(2)

π
= 3,037m. (2.18)

For a desired peak intensity of 1016 W
cm2 the lens used to focus the beam must have a smaller

focal length of

f = 30cm, (2.19)

because the focal length is proportional to the inverse square root of the intensity.
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2.3 Second order nonlinearities Experimental Nonlinear Optics

2.3 Second order nonlinearities

The optical response of a medium can be described by developing the polarization P̃ (t ) in a
power series in the electric field strength Ẽ(t ) with pre-factors know as nonlinear suscepti-
bilities χ(n) as

P̃ (t ) = P̃ (1)(t )+ P̃ (2)(t )+ P̃ (3)(t )+ . . . = ε0[χ(1)Ẽ(t )+χ(2)Ẽ 2(t )+χ(3)Ẽ 3(t )+ . . .]. (2.20)

a) Which type of material has an almost instantaneous response to the electric field such
that equation (2.20) is valid? Briefly explain why.

b) Consider onlyχ(2) processes. Derive an expression for second-order nonlinear interac-
tion with two laser frequencies (ω1 and ω2). Name the related nonlinear phenomena.

a.) Solution: Only materials without any losses and no dispersion have an almost instan-
taneous response to the electric field.

b.) Solution: We model the incident electric field as the sum of two fields with frequency
ω1 and ω2

Ẽ(t ) = E1 exp(−iω1t )+E2 exp(−iω2t ). (2.21)

We can now write the second order polarization as

P̃ (2)(t ) = ε0χ
(2)[E1e−iω1t +E2e−iω2t + c.c.

]2

= ε0χ
(2)[E1e−iω1t +E2e−iω2t +E∗

1 eiω1t +E∗
2 eiω2t ]2

= ε0χ
(2)[(E1e−iω1t +E2e−iω2t )2 +2(E1e−iω1t +E2e−iω2t )(E∗

1 eiω1t +E∗
2 eiω2t )

+ (E∗
1 eiω1t +E∗

2 eiω2t )2]
= ε0χ

(2)[E 2
1e−i2ω1t +E 2

2e−i2ω2t +2E1E2e−i(ω1+ω2)t +2E1E∗
1 +2E2E∗

2

= +2E1E2 ∗e−i(ω1−ω2)t + c.c.
]
. (2.22)

We can now identify the colors as Second Harmonic Generation (SHG), Sum frequency Gen-
eration (SFG), Optical Rectifictation (OR) and Difference Frequency Generation (DFG).
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2.4 Supercontinuum generation Experimental Nonlinear Optics

2.4 Supercontinuum generation

Supercontinuum generation can occur in media with Kerr nonlinearity, so all optical fields
are coupled via theχ(3) coefficient of the material. For the sake of simplicity, we only consider
two electromagnetic waves (ω1) and (ω2) =ω1 +∆ω, spaced in frequency by ∆ω.

a) If those fields interact in the Kerr medium, which new optical fields can be produced?

b) If these new generated optical fields have sufficiently high intensities, what will hap-
pen?

c) Give a graphical representation of the spectrum for this process!

a.) Solution: In order to assess, which optical fields can be produced, we calculate the
third order nonlinear polarization term

P̃ (3)(t ) = ε0χ
(3)[E1e−iω1t +E2e−i(ω1+∆ω)t + c.c.

]3

= ε0χ
(3)[E1e−iω1t +E2e−i(ω1+∆ω)t +E∗

1 eiω1t +E∗
2 ei(ω1+∆ω)t ]3

= ε0χ
(3)[(E1e−iω1t +E2e−i(ω1+∆ω)t )3

+3(E1e−iω1t +E2e−i(ω1+∆ω)t ) · (E∗
1 eiω1t +E∗

2 ei(ω1+∆ω)t )+ c.c.
]

= ε0χ
(3)[E 2

1e−i3ω1t +3E 2
1E2e−i(3ω1+∆ω)t +3E1E 2

2e−i(3ω1+2∆ω)t +3E 3
2e−i(3ω1+3∆ω)t

+3E 2
1E∗

1 e−iω1t +6E1E2E∗
1 e−i(ω1+∆ω)t +3E 2

2E∗
1 e−i(ω1+2∆ω)t

+3E 2
1E∗

2 e−i(ω1−∆ω)t +6E1E2E∗
2 e−iω1t +3E 2

2E∗
2 e−i(ω1+∆ω)t + c.c.

]
(2.23)

b-c.) Solution: For sufficiently high intensities the new generated optical fields can again
create new frequencies by third order nonlinear frequency combination which leads to a
very broad spectrum which is called a supercontinuum.

We can visualize the spectrum of the new optical fields we calculated in Task a)

ω1 2ω1 3ω1

ω

I
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3 Third Exercise

3.1 Difference Frequency Generation

Consider an optical parametric amplifier which consists of a lithium niobate crystal and a
Nd:YAG pump laser (1064 nm):

a) If the amplifier is seeded with a weak optical field of λ2 = 1550nm, what wavelengths
are expected outside the crystal due to DFG? What are the corresponding photon ener-
gies for the pump, the seed and the output wave? Is the energy conservation fulfilled?

b) Calculate the momenta of the involved photons for the DFG process (3 waves). If the
pump and the seed are collinear into the crystal, is the momentum conservation ful-
filled? Please interpret the results.

c) For collinear case, calculate the accumulated linear phase shift through a crystal (thick-
ness d = 10mm) for three waves. Compare the phase difference and interpret the re-
sults.

The Sellmeier equation (which gives the real refractive index as a function of wavelength) for
lithium niobate reads as (λ in µm) T in ◦C:

n2 = a1 +b1 f + a2 +b2 f

λ2 − (a3 +b3 f )2
+ a4 +b4 f

λ2 −a2
5

−a6λ
2 (3.1)

f = (T −24,5◦C)(T +570,82◦C).

a1 = 5.35583, a2 = 0.100473, a3 = 0.20692, a4 = 100, a5 = 11.34927, a6 = 1.5334 ·10−2

b1 = 4.629 ·10−7,b2 = 3.862 ·10−8,b3 = 0.89 ·10−8,b4 = 2.657 ·10−5.

a.) Solution: We can calculate the output wavelength by using the condition for DFG
ω3 = ω1 −ω2, where the new generated frequency ω3 is called the idler wave, whereas ω2 is
the signal wave. We therefore obtain

ω3 =ω1 −ω2 = 2πc

(
1

λ1
− 1

λ2

)
⇒ λ3 = 2π

c

ω3
= λ1λ2

λ2 −λ1
= 3,393µm. (3.2)

We can calculate the photon energies by using Ei = ℏωi . We then obtain

E1 = 1,165eV E2 = 0,8eV E3 = 0,3654eV. (3.3)

The energy consveration is naturally fulfilled because

ℏω3 = ℏ(ω1 −ω2) ⇒ E3 = E1 −E2. (3.4)
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3.1 Difference Frequency Generation Experimental Nonlinear Optics

b.) Solution: We can calculate the momentum via the wave vector k

p = ℏk |k | = 2πn(λ)

λ
. (3.5)

We can calculate the refractive index for all wavelengths using (3.1) at 24,5 °C. This yields

n1 = 2.1558 n2 = 2.1379 n3 = 2.0821. (3.6)

We can now calculate the modulus of the momenta

p1 = 1,3425 ·10−27 Js p2 = 0,9139 ·10−27 Js p3 = 0,4066 ·10−27 Js. (3.7)

We can see that p1 − p2 = 0,429 · 10−27 Js ̸= p3. This means, that for the collinear case mo-
mentum conservation is not fulfilled. Therefore we cannot achieve DFG for the collinear
case.

c.) Solution: We can calculate the accumulated phase by

ϕ= k ·d = 2πn

λ
·d . (3.8)

We can again compute all the phases for each wave which leads to

ϕ1 = 127.305 ϕ2 = 86662 ϕ3 = 38558. (3.9)

We can see that the phase difference is much larger than 2π, which means that the phases
are not matched for the colinear case. This means, that the maxima of the electric fields do
not overlap for the whole propagation through the crystal.

In order to obtain phase matching and momentum conservation we input the signal wave
ω2 under a small angle θ.

k1

k2
k1

k2 k3

14



3.2 Coupled wave equations for DFG Experimental Nonlinear Optics

3.2 Coupled wave equations for DFG

In the lecture, the coupled wave equations for SFG (ω3 = ω1 +ω2) were derived using the
nonlinear wave equation for all three frequencies

∆Ei−
n2

i

c2
∂2

t Ei = 1

ε0c2
∂2

t P N L
i . (3.10)

a) Derive the coupled wave equations for DFG (ω2 =ω3 −ω1).

b) By using the coupled wave equations, derive the Manley-Rowe relation for the process
of DFG and give a brief discussion of the formulas.

a.) Solution: For a small rhs of the nonlinear wave equations we can make the Ansatz

E2(z, t ) = A2(z)ei(k2z−ω2t ) +c.c. (3.11)

The nonlinear source term can be written accordingly

P2(z, t ) = P2e−iω3t + c.c. (3.12)

We can write the spatial dependence of the polarization P2 as

Pω2 = Pω3−ω1 = P2 = 4ε0deffE(ω3)E(−ω1)

= 4ε0deffE(ω3)E∗(ω1)

= 4ε0deff A∗
1 A3ei(k3−k1)z . (3.13)

Now we analyze all three terms of (3.10) separately:

∆E2 = ∂2

∂z2

[
A2(z)ei (k2z−ω2t ) +c.c.

]
= ∂

∂z

[
A′

2(z)ei (k2z−ω2t ) + ik2 A2ei (k2z−ω2t ) +c.c.
]

= [
���A′′

2(z)+ ik2 A′
2 −k2

2 A2 + ik2 A′
2

]
ei (k2z−ω2t ) +c.c.

= [
2ik2 A′

2 −k2
2 A2

]
ei (k2z−ω2t ) +c.c. (3.14)

The second derivative of A2 can be neglected, because we assume A2 does not become very

strong over short distances (Slowly varying amplitude approximation ∂2 A
∂z2 ≪ pd v Az).

The second term can be evaluated as

−n2
2

c2
∂2

t E2 =
n2

2

c2
ω2

2 A2(z)ei (k2z−ω2t ) +c.c.

= k2
2 A2(z)ei (k2z−ω2t ) +c.c. (3.15)

Here we used the dispersion relation k2
2 = n2

2
c2 ω

2
2.

The nonlinear term can be written as

1

ε0c2
∂2

t P N L
i = 1

ε0c2

∂2

∂t 2

[
4ε0deff A∗

1 A3ei(k3−k1)z−ω2t +c.c.
]

= −ω2
2

ε0c2

[
4ε0deff A∗

1 A3ei(k3−k1)z−ω2t +c.c.
]

(3.16)
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Now we add (3.14), (3.15) and (3.16) together (neglect the complex conjugate part) and ob-
tain

2ik2 A′
2eik2z =−−ω2

2

��ε0c2
4��ε0deff A∗

1 A3ei(k3−k1)z . (3.17)

This result can be simplified by introducing the phase mismatch ∆k = k3 −k1 −k2

∂A2

∂z
= i

2ω2
2deff

k2c2
A∗

1 A3ei∆k z . (3.18)

Analogously we can derive the coupled wave equations for A1 and A2

∂A1

∂z
= i

2ω2
1deff

k1c2
A∗

2 A3ei∆k z (3.19)

∂A3

∂z
= i

2ω2
3deff

k3c2
A1 A2e−i∆k z . (3.20)

b.) Solution: We can write the intensity Ii as

Ii = cniε0

2
Ai A∗

i . (3.21)

The derivative of the intensity is then

∂I2

∂z
= cniε0

2

(
A2
∂A2∗
∂z

+ A∗
2
∂A2

∂z

)
(3.18)= cniε0

2
i
2ω2

2deff

k2c2

(
A∗

1 A∗
2 A3ei∆k z +c.c.

)
= ε0deffω2

(
i A∗

1 A∗
2 A3ei∆k z︸ ︷︷ ︸
ξ=a+ib

+c.c.

)

We can write the expression iξ+c.c. = i(a + ib)+ (−i)(a − ib) =−2b =−2Im(ξ).

∂I2

∂z
=−2ε0deffω2 Im(A∗

1 A∗
2 A3ei∆k z) (3.22)

∂I1

∂z
=−2ε0deffω1 Im(A∗

1 A∗
2 A3ei∆k z) (3.23)

∂I3

∂z
=+2ε0deffω3 Im(A∗

1 A∗
2 A3ei∆k z). (3.24)

If we now add up all results we obtain

∂I1

∂z
+ ∂I2

∂z
+ ∂I3

∂z
= 2ε0deff (ω3 −ω1 −ω2)︸ ︷︷ ︸

=0

Im(A∗
1 A∗

2 A3ei∆k z) (3.25)

which corresponds with energy conversation. We can now write down the MANLEY-ROWE

relations for DFG

∂

∂z

(
I1

ω1

)
= ∂

∂z

(
I2

ω2

)
=− ∂

∂z

(
I3

ω3

)
. (3.26)
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3.3 Perfect phase matching OPA

DFG can be used for optical parametric amplification (OPA) (ω2 =ω3−ω1). Assume a strong
pump wave ω3 which is undepleted (|A3| is constant). There is seed wave (ω2) with small
amplitude |A2| at the front surface of the crystal. The generated wave ω1 from the DFG is
called the idler wave (|A1| is 0 at the front surface).

dA1

dz
= 2iω2

1deff

k1c2
A3 A∗

2 ei∆kz ,
dA2

dz
= 2iω2

2deff

k2c2
A3 A∗

1 ei∆kz (3.27)

with ∆k = k3 −k2 −k1. Calculate the spatial evolution for |A1(z)|2 and |A2(z)|2 by using the
coupled wave equation and give a graphical interpretation.

Solution: For the undepleted pump approximation the amplitude of the waveω3 does not
change dA3

dz = 0. For the assumption of perfect phase matching ∆k = 0 we can write the
coupled wave equations as follows

dA1

dz
=µ1 A3 A∗

2 ,
dA2

dz
=µ2 A3 A∗

1 ,
dA3

dz
= 0, µi = i

2ω2
1deff

ki c2
. (3.28)

We can decouple the system of differential equations by differentiation and substitution

d2 A1

dz2
=µ1 A3

dA∗
2

dz
=µ1µ

∗
2 A3 A∗

3 A1 =σ2 A1 σ2 =µ1µ
∗
2 |A3|2. (3.29)

The simple solution for that differential equation is

A1(z) =C1(eσz −e−σz) = 2C1 sinh(σz), (3.30)

which fulfills the boundary condition A1(z) = 0. We can use (3.28) to find A2(z)

dA1

dz
=µ1 A3 A∗

2 =C1σ(eσz +e−σz)

⇒ A2(z) = σC∗
1

µ∗
1 A∗

3

(eσz +e−σz)+C2 =
2σC∗

1

µ∗
1 A∗

3

cosh(σz). (3.31)

We can calculate the intensity I of the two beams ω1 and ω2

I1 ∼ |A1(z)|2 = |A1(0)|2 sinh2(σz) (3.32)

I2 ∼ |A2(z)|2 = |A2(0)|2 cosh2(σz). (3.33)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

2

4

6

z

I I1 ∼ |A1|2
I2 ∼ |A2|2
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4 Fourth Exercise

4.1 Phase Matching Bandwith of SH in BBO

Phase matching in Beta-Bariumborate (BBO) can be achieved by exploiting its birefringence
similarly to KDP. You have a BBO crystal that is cut for efficient second harmonic genera-
tion (SHG) at 1,4µm in collinear geometry (type 1 ooe phase matching, 90° to surface). Its
thickness is L = 50µm.

a) Make a sketch that indicates the polarization state of in-going and out-going radiation
as well as the optic axis if you would mount the crystal in the lab to make SHG. Which
axis needs to be aligned?

b) use a computer to calculate the wavelength dependent phase mismatch for the align-
ment described above for second harmonic generation in the wavelength range be-
tween 1,0µm and 2,2µm numerically. Plot the resulting ∆k as function of the funda-
mental wavelength and indicate the phase matching bandwidth, ∆ω, where L∆k(ω±
∆ω) ≤ 2.7831 is satisfied. This corresponds to the half width of the conversion effi-
ciency curve.

c) Estimate the phase matching bandwidth based on an analytical derivation to first or-
der and compare it to your numerical result. Start from the definition of the phase
mismatch, i. e.

L∆k(ω±∆ω) ≤ 2.7831, (4.1)

where ω0 is the frequency of perfect phase matching. Write ∆k into a Taylor series in
order to obtain an expression for ∆ω. Afterwards, start from the expression for ∆k in
SHG and relate it to the refractive index of the material. Don´t forget to give the value
for ∆ω and mark ω0 ±∆ω in the figure from b.) in the end.

d) Why is it important to consider the phase matching bandwidth if one wants to use the
given crystal in a second harmonic generation auto-correlation?

e) Around which axis would you rotate the crystal if you want to make SHG from 1,8µm
with the same conversion efficiency as at 1,4µm? You can mark it in the sketch from
a.)

a.) Solution: First we want to find the phase matching angle for the SHG at 1,4µm. For
that we try to find the refractive index ne (λ,ϕ) of the ordinary ray. We use the condition
that the refractive index of the second harmonic for extraordinary rays must be equal to the
refractive index of the fundamental:

n2
e (λ/2,ϕ) = n2

o(λ/2)cos2ϕ+n2
e (λ/2)sin2ϕ

!= n2
o(λ). (4.2)
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The analytic solution to find the angle is

ϕ=π−2arctan


√√√√√√

(n2
o −n2

e )(n2
o −n2

e )n2
o −2n2

e +n2
o

n2
o −n2

o

. (4.3)

We can calculate the refractive indices by using the Sellmeier-formula for BBO1 which is
given as

n2
o(λ) = 2.7359+ 0.01878

λ2 −0.01822
−0.01354λ2

n2
e (λ) = 2.3753+ 0.01224

λ2 −0.01667
−0.01516λ2

. (4.4)

Using Python we can evaluate n2
e (0,7µm),n2

o(0,7µm),n2
o(1,4µm) and find, that the angle φ

is

ϕ= 0.3737665614033969 ≈ 21,41◦. (4.5)

We now cut the crystal in such a way, that the propagation axis is tilted to the optical axis by
the angle ϕ. This is sketched in the figure 1:

z, optical axis

x, y

ne

no k

ϕ

⊙⊙⊙⊙⊙⊙
Eo

Ee

Fig. 1: Polarization state of in-going (fundamental) and out-goin (SH) radiation.

b.) Solution: We can calculate the wavelength dependent phase mismatch using the fol-
lowing formula:

∆k = 2k1 −k2 = 2π

λ0
(2n1 −n2)

= 4π
(
no(λ)−ne (λ/2,ϕ)

)
. (4.6)

This can be plotted using Python. The graph is displayed in figure 2. We can calculate the

1https://de.wikipedia.org/wiki/Bariumborat
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1.0 1.2 1.4 1.6 1.8 2.0 2.2
Wavelength in m

40000
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 m
1

k( )
phase matching bandwidth

Fig. 2: Phase mismatch for BBO for SHG at 1,4µm.

phase matching bandwidth by using

∆k(ω0 +∆ω) ≤ 2.781

50µm
= 55662

1

m
. (4.7)

Graphically we can find the value ∆λ= 0,135µm. We can relate this to the bandwidth ∆ω

∆ω= 2πc

(
1

λ1
− 1

λ2

)
= 2πc

(
∆λ

λ1 ·λ2

)
= 2πc

(
0,135µm

1,4µm1,535µm

)
= 118,3THz. (4.8)

d.) Solution: If we want to use the crystal in an autocorrelator we want to correlate the
short pulse with itself. This requires phase matching over the whole bandwidth of the pulse,
which can be, depending on the pulse length, rather broad. We therefore need a phase
matching bandwidth that is larger than the bandwidth of the pulse.

e.) Solution: In order to achieve phase matching at another wavelength we need to adjust
the angle ϕ. We can run the simulation again for λ= 1,8µm which yields

ϕ′ = 21,74◦, (4.9)

which means that we have to rotate around the plane of the wave vector k and the optical
axis.
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5 Fifth Exercise

5.1 Kleinman’s symmetry and χ(2) tensor

Quite often incident optical waves are far away from a resonance of the optical material. In
that case the dispersion is negligible and the susceptibility does not depend on the frequen-
cies. Then the indices can be permuted without permuting the frequencies. That is known
as Kleinman’s symmetry. Very often a tensor

di j k = 1

2
χ(2)

i j k (5.1)

is defined without frequency arguments. For symmetric tensors the contracted notation di l

was introduced in the lecture. How many elements of di l are independent when Kleinman’s
symmetry is valid? Show that by writing down the matrix di l .

Solution: For a medium with Kleinman’s symmetry we observe full permutation symmetry
of the indices of χi j k meaning

di j k = di k j = d j i k = d j ki = dki j = dk j i . (5.2)

Since the susceptibility is a symmetric tensor we can introduce the contracted notation:

di j k → di l with
di j k 11 22 33 23 13 12
di l 1 2 3 4 5 6

. (5.3)

In contracted notation the di l tensor has 18 components and looks like

di l =
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

. (5.4)

We can now write the di j tensor in the uncontracted components

di j k =
d111 d122 d133 d123 d113 d112

d211 d222 d233 d223 d213 d212

d311 d322 d333 d323 d313 d312

. (5.5)

We can see now that the following components of the di l tensor are equal for Kleinman’s
symmetry:

d12 = d26 d13 = d35 d16 = d21

d15 = d31 d23 = d34 d24 = d32 (5.6)

d14 = d25 = d36.

Therefore we have 10 independent components for Kleinman’s symmetry.
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5.2 Structure of di j k for symmetry class 3m

Crystal symmetry simplifies the structure of the truncated tensor di l even more. Consider a
trigonal crystal system and the 3m crystal class (c3ν in Schönflies notation). cn indicates that
the group has a n-fold rotation axis (c means “cyclic”). cnν has an additional mirror plane
parallel to the axis of rotation.

Use the crystal symmetry to retrieve the form of the matrix di l . Assume that the Kleinman’s
symmetry is valid.

Solution: The crystal class 3m is a ditrigonal-pyramidial. We assume that the axis of rota-
tion is the x-axis. Therefore the mirror plane is the x y-plane.

We now need to write down the matrices for the symmetry transformations. First we con-
sider the mirror symmetry of the x y-plane. This symmetry operation flips the sign of the
z-coordinate. Therefore the corresponding matrix is

M =
1 0 0

0 1 0
0 0 −1

. (5.7)

Using Einsteins sum convention we can write the transformation of di j k as

di j k
!= d ′

i j k = Mi l M j m Mkndlmn . (5.8)

We need to apply M three times for each. Because Mi j is a diagonal matrix we find

di j k = Mi i M j j Mkk dl mn

=
{
+di j k for zero or two 3’s

−di j k for one or three 3’s
. (5.9)

For the second case we have di j k =−di j k which directly implies di j k = 0. So lets write down
the elements of di j k :

111 112 ��113
121 122 ��123
��131 ��132 133

211 212 ��213
221 222 ��223
��231 ��232 233

��311 ��312 313
��321 ��322 323
331 332 ��333

(5.10)

Now we can see how the tensor di l will look like:

di l =
d11 d12 d13 0 0 d21

d21 d22 d23 0 0 d12

0 0 0 d23 d13 0

. (5.11)

Next we write down the Matrix for the 120° rotation around the x-axis. Here we simply take
a rotational Matrix

R =
1 0 0

0 cosϕ sinϕ
0 −sinϕ cosϕ

 with ϕ= 120◦. (5.12)
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We note that sin
(
ϕ(120◦)

) = p
3

2 and cos
(
ϕ(120◦)

) = −1
2 . So now lets look at the six indices

in (5.11) in the upper left corner. In general di j k transforms as

di j k = Ri l R j mRkndl mn . (5.13)

For d111 this is simply

d111 = R1l R1mR1ndlmn = R11R11R11d111 = d111. (5.14)

This is a trivial solution. Next we consider d212

d222 = R2l R2mR2ndlmn

= cosϕcosϕcosϕd222

+ (sinϕcosϕcosϕ)(���d322 +���d232 +���d223)

+ sinϕsinϕcosϕ(d233,d323,d332)

+ sinϕsinϕsinϕ���d333

⇒ d22 = cos3ϕd22 +3sin2ϕcosϕd23

d22 =−1

8
d22 − 9

8
d23 ⇒ d22 =−d23. (5.15)

Analogously we can calculate d211

d211 = R2l R1mR1ndlmn

= R22R11R11d211 +R23R11R11���d311

d211 = cosϕd211 ⇒ d21 = 0. (5.16)

and also d122

d122 = R1l R2mR2ndlmn

= R11R22R22d122 +R11R22R23�
��d123 +�

��d132 +R11R23R23d133

= cos2ϕd122 + sin2ϕd133

⇒ d122 = d133 ⇒ d12 = d13. (5.17)

Inserting these results into (5.11) we obtain

di l =
d11 d12 d12 0 0 0

0 d22 −d22 0 0 d12

0 0 0 −d22 d12 0

. (5.18)

Therefore we can see, that the di l tensor has only three independent indices.
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6 Sixth Exercise

6.1 Optical Kerr Lens

An optical beam travelling in the z-direction is transmitted through a thin nonlinear optical
material exhibiting Optical Kerr effect, n(I ) = n0+n2I . The material lies in the x y-plane and
has a small thickness d so that its complex amplitude transmittance is exp(−ink0d). The
beam has an approximately planar wavefront and an intensity distribution I ≈ I0(1− (x2 +
y2)/w 2) at points near the beam axis (x, y ≪ w), where I0 is the peak intensity and w is the
beam width.

a) Show that the medium acts as a thin lens with focal length f that is inversely propor-
tional to I0.

b) A collimated Gaussian (w = 6mm) beam is focused into a vacuum chamber using a
f = 1m lens. 10 cm after the focusing lens, the beam enters the vacuum chamber
through a fused silica window that has a thickness of 2 mm. Use your results from
a) to calculate the shift of the focus position due to the Kerr Lens that is formed in the
entrance window at an intensity of IK L = 3 ·1011 W

cm (n2 = 3 ·10−16 cm
W ).

Hint: A lens of focal length f has a complex amplitude of transmittance proportional to

exp
(
ik0

x2+y2

2 f

)
.

a.) Solution: In order to show that this nonlinear optical material acts as a lens, we proof
that the complex amplitude of transmittance is the same as for a lens. We can write the
electric field behind the material with thickness d as

E(x, y, z = d) = E(x, y, z = 0)exp(−ink0d)

= E(x, y,0)exp(−i(n0 +n2I )k0d)

= E0 exp

(
−i

(
n0 +n2I0

(
1− x2 + y2

w 2

))
k0d

)
= E0 exp(−i(n0 +n2I0)k0d)︸ ︷︷ ︸

const. phase

exp

(
−in2I0

(
−x2 + y2

w 2

)
k0d

)
︸ ︷︷ ︸

evolving phase

. (6.1)

We now compare the evolving phase to the phase transmittance of a lens

exp

(
−in2I0

(
−x2 + y2

w 2

)
k0d

)
!= exp

(
ik0

x2 + y2

2 f

)
⇒ n2I0k0d

w 2
= k0

2 f
⇒ f = w 2

2n2I0d
. (6.2)

We see that the self-focusing effect is larger for a longer medium d and higher intensities.
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b.) Solution: Since we have a Gaussian beam we can use q-parameters to describe the
beam evolution. We start with the inverse of the q-parameter

1

q0
= 1

R
− i

λ

πw 2
0

=−i
λ

πw 2
0

⇒ q0 = i
πw 2

0

λ
= izR , (6.3)

where zR is the Rayleigh length.

We can now use the ABCD-matrix formalism to describe the behaviour of the q-parameter.
Our goal is to find the beam width at the entrance of the nonlinear medium. The transfer
matrix for a lens f = 1m and free space propagation L = 0,1m is(

A B
C D

)
=

(
1 L
0 1

)(
1 0
− 1

f 1

)
=

(
1− L

f L

− 1
f 1

)
. (6.4)

The q-parameter can be written as

1

q
= C q0 +D

Aq0 +B
=

1− i
zR

f

i(1− L
f )zR +L

= 1− izR

0.1+ i0.9zR
. (6.5)

We obtain the new beam radius by looking at the imaginary part of (6.5)

− λ

πw 2
!= Im

(
1− izR

0.1+ i0.9zR

)
= Im

(
(1− izR )(0.1−0.9izR )

0.12 + (0.9zR )2

)
− λ

πw 2
=−0.1zR +0.9zR

0.01+0.81z2
R

w 2
0

zR w 2
= zR

0,01m2 +0.81z2
R

⇒ w 2 = w 2
0

(
0,01m2

z2
R

+0.81

)

= w 2
0


�

�
�
�

��0,01m2λ2

π2w 4
0

+0.81

= 0.81w 2
0 . (6.6)

We therefore conclude that the width of the beam has been reduced to w = 0.9w0 = 5,4mm.
Now we can calculate the focal length of the nonlinear material by using (6.2)

f ′ = w 2

2n2I0d
= (5,4mm)2

2 ·3 ·10−16 cm
W 3 ·1011 W

cm ·2mm
= 81m. (6.7)

We can calculate the new focal length of the system using

1

ftot.
= 1

f
+ 1

f ′ −
L

f1 f2

= 1
1

m
+ 1

80m
− 10cm

80m2
= 1,01125

1

m
⇒ ftot = 98,89cm. (6.8)

The Focal position is shifted by about 1,11 cm.
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6.2 Self-Phase Modulation

Consider a Gaussian shaped pulse which has a time-dependent intensity distribution: I (t ) =
I0 exp

(−(t/τ)2
)
. Assume the pulse is propagating along z-direction through a nonlinear op-

tical material exhibiting strong optical Kerr effect, n(I ) = n0 +n2I .

a) Show that the instantaneous phase of the beam inside the martial has an intensity de-
pendence and calculate the nonlinear phase shift due to the Kerr effect. (Considering
a plane wave, E = E0 exp(−i(ω0t −kz))).

b) How does this nonlinear phase shift contribute to the frequency of the field and what
can we use this for?

a.) Solution: We can write the phase of a Gaussian pulse as

φ(t ) =ω0t −kz =ω0t −k0nz. (6.9)

Now we use that the refractive index is intensity dependent. The phase will now transform
as

φ(t ) =ω0t −k0

(
n0 +n2I0 exp

(
− t 2

τ2

))
z

=ω0t −k0n0z︸ ︷︷ ︸
linear phase

−k0n2I0 exp

(
− t 2

τ2

)
z︸ ︷︷ ︸

nonlinear phase

. (6.10)

The instantaneous frequency is the time derivative of the temporal phase

ωinst. = dφ0

dt
+ dΦNL

dt
=ω0 +∆ω

=ω0 −k0n2z
dI

dt
. (6.11)

We can calculate the phase shift ∆ω as

∆ω= k0n2z
2t

τ2
I (t ). (6.12)

b.) Solution: For the leading edge of the pulse (t < 0) the frequency shift is negative and
for trailing edge (t > 0) positive. This corresponds to a positive frequency chirp imprinted
on the pulse. In general, many new frequencies are generated by SPM which increases the
bandwidth of the pulse by a considerable amount. The can use this effect to further reduce
the pulse duration of a femtosecond laser pulse, where the pulse duration is limited by the
gain narrowing effect which reduces the bandwidth and hence increases pulse duration.

Typically, a 25 fs pulse is focused into a hollow core fibre filled with a noble gas. Due to the
SPM in the core the bandwidth of the pulse increases and hence reduces the Fourier limited
pulse duration. The positive chirp is compensated by using multi-layered chirped mirrors.
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6.3 Estimation of NL phase contributions B-integral

In order to estimate the nonlinear phase shift on an optical path one can use the so-called B-
integral which is accumulated in the last pass of a high power Ti:Sa-Laser amplifier assuming
a stretched pulse duration of 200 ps, a pulse energy of 13 mJ, a crystal thickness of 8 mm and
a beam diameter of 300µm. Please interpret the results.

Solution: The B-integral (beam breakup integral) is used to measure phase distortions in-
side the Kerr-medium of length l and is defined as

B = 2π

λ

lˆ

0

n2I (z)dz . (6.13)

It describes the total nonlinear phase shift accumulated over the length of the crystal and
therefore characterizes the importance of self-focusing effects.

We assume that the intensity of the laser pulse is constant on the beam axis but varies with
time. For a Gaussian temporal shape the intensity can be written as

I (x, y, z, t ) = I0e−4ln2 t2

τ2 e−
x2+y2

w2 . (6.14)

We obtain the total pulse energy by integrating over the x y-plane and time

E =
∞̂

−∞
dt

2πˆ

0

∞̂

0

r 2 dr dϕ I0e−4ln2 t2

τ2 e−
x2+y2

w2

= 2πI0

2

∞̂

−∞
dt

∞̂

0

du e−4ln2 t2

τ2 e−
u

w2

=πw 2I0

∞̂

−∞
dt e−4ln2 t2

τ2 =
√

π

4ln2
πw 2I0τ≈ 1.06πw 2I0τ. (6.15)

We therefore find I (z) = 0.94E
πw2τ

= 8,644 ·1010 W
cm2 . Using n2 ≈ 3 ·10−16 cm2

W we can use this result
to calculate the B-integral

B = 2π

λ
d I0n2 = 2π

800nm
8mm ·8,644 ·1010 W

cm2
·3 ·10−16 cm2

W
= 1.633 < 3. (6.16)

For values of B which are smaller than three, the nonlinear effects do not play an important
role.
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