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First Exercise High intensity relativistic optics

1 First Exercise

1.1 Light intensity

Calculate the light intensity IL for a given vector potential A(x, t ) = ê y A0 sin(kL x −ωL t ).

Solution: In general the electric field as a function of the scalar potential Φ and vector
potential A is given as

EL =−∇⃗∇∇Φ− ∂A

∂t
. (1.1)

Since we assume no charge and current distribution,Φ= 0 which results in

EL =−∂A

∂t
=ωL A0 cos(kL x −ωL t )ê y . (1.2)

The magnetic field is given as the curl of the vector potential and is therefore

BL = ∇⃗∇∇××× A =
∂x
∂y
∂z

×
 0

A0 sin(kL x −ωt )
0

= A0kL cos(kL x −ωL t )êz . (1.3)

We can introduce here the abbreviations E0 =ωL A0 and B0 = kL A0, which yield the relation
c B0 = E0, for which we assumed the dispersion relation kL =ωL/c.

The intensity as defined as the time average of the magnitude of the poynting vector S =
E ×H . For no magnetization we can write µ0H = B

IL = 〈|S|||S|〉 = 〈|E ×H |||E ×H |〉 = 1

µ0
〈|E ×B |||E ×B |〉

|E ×B | = E0B0 cos2(kL x −ωL t )

= E0B0

µ0

1

T

T̂

0

cos2(kL x −ωt )dt , (1.4)

where T = 2π
ω is the length of an optical cycle. We can easily solve this integral by using the

addition formula cos2
(
ϕ

)= 0.5(1+cos
(
2ϕ

)
)

IL = E0B0

2µ0

1

T

T̂

0

[1+cos(2kL x −2ωt )]dt

= E0B0

2µ0

1

T

[
t − 1

2ω
sin(2kL x −2ωt )

∣∣∣∣T

0

= E0B0

2µ0

1

T

(
T − 1

2ω
[sin(2kL x −2ωT )+ sin(2kL x)]︸ ︷︷ ︸

=0

)
= E0B0

2µ0
= ε0c

2
E 2

0 . (1.5)

The sum of the two sines in the second to last line vanishes because a phase shift of π= 2ωT
changes the sign of the sine.
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1.2 Concentration of solar radiation High intensity relativistic optics

1.2 Concentration of solar radiation

Assuming that all light power from the sun that is reaching the surface of the earth could be
focussed to a small focal spot, how small would the focal spot area need to be in order to
generate an intensity where an electron interacting with the associated electric field would
least in the classical limit reach the speed of light? Assume that the total power emitted from
the sun into the total solid angle is 3,86 ·1026 W. Which “practical” problems would have to
be solved first to realize such a setup? Would it –at least in principle–be possible to use a
sufficiently large lens?

Solution: In the classical description an electron would reach the speed of light, when the
maximum electron velocity divided by c is equal to one:

a0 := eE0

ωLme c
= 1, (1.6)

which can be identified as the dimensionless amplitude of the vector potential. This equa-
tion can be solved for the electric field amplitude

E0 =ωL
me c

e
= 2π

λ

me c2

e
. (1.7)

The intensity can be calculated by using (1.5)

IL = ε0c

2
E 2

0 = ε0c

2

(
2π

λ

me c2

e

)2

= µm2

λ2
1,3682 ·1018 W

cm2
. (1.8)

For the mean wavelength of the sun λ= 0,5µm this leads to an intensity of

IL = 5,473 ·1018 W

cm2
. (1.9)

If we want to calculate the whole incident power on the surface of the earth we need to mul-
tiply the intensity of the sunlight by the projected area of the earth towards the sun. This can
be done as follows:

Iearth = Psun

4πR2
⇒ PL = Psun

πr 2
earth

4πR2
= 1,754 ·1017 W, (1.10)

where R = 1au denotes the distance between the earth and the sun. The area of the focal
spot can therefore be calculated as

A = PL

IL
= 1,754 ·1017 W

1,3682 ·1018 W
cm2

= 0,032cm2. (1.11)

If we want to focus the sunlight incident on the whole earth, we would need an optical sys-
tem, that can collect the whole sunlight incident on the earth and focus it into a single spot.
However, we can not construct such an optical system because, if we focus so much energy
in this tiny spot, the receiver would heat up in such a way, that is surpasses the temperature
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1.3 Intensity measurement: High intensity relativistic optics

of the sun. This would violate the second law of thermodynamics. Therefore there are cer-
tain limitations for a lens. For example we cannot construct lenses with a f-number N = f /D
less than 0.5. This means that there must be an upper limit for the concentration of solar
radiation.

So even if we could build a suffciently large lens to collect the whole incident radiation, we
can not construct it in such a way, that it will focus the whole energy into a spot of the size of
0,032cm2, because this would violate the second law of thermodynamics.

1.3 Intensity measurement:

How can the intensity be measured in an experiment? Conceive of at least two methods to
determine the intensity in an experiment dealing with relativistic effects. Keep in mind the
huge value of the intensity and think of special physical effects that are directly related to the
intensity.

Solution 1: As derived in the lecture, if we describe the movement of an Electron in a plane
electromagnetic wave, the electron will be accelerated in the direction of field propagation.
The solution of the equation of motion of the electron shows that it travels with an averaged
drift velocity vdrift along the propagation axis. The drift velocity is given as

vdrift =
〈x

t

∣∣∣x

t

〉
T
= c

a2
0

a2
0 +4

⇒ a2
0 =

4vdrift

c − vdrift
. (1.12)

According to equation (1.6) the normalized vector potential is connected to the electric field
amplitude E0. Therefore the electric field amplitude and thus the intensity can be written
as

E 2
0 =

(ωLme c

e

)2 4vdrift

c − vdrift

⇒ IL = ε0c

2
E 2

0 = ε0c

2

(ωLme c

e

)2 4vdrift

c − vdrift
. (1.13)

By measuring the drift velocity of an accelerated electron, we can determine the intensity of
the electromagnetic field.

Solution 2: Another approach to determine the intensity is to retrieve it indirectly by mea-
suring the pulse energy, the focal area and the pulse duration, since the intensity is defined
as:

IL = pulse energy

pulse duration · focal area
. (1.14)

The pulse energy can be measured by using an energy detector which is heated up, when a
certain amount of energy is absorbed. The induced temperature difference can be calibrated
to an energy quantity. If the repetition rate of the oscillator is known, we can then calculate
the pulse energy.
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1.3 Intensity measurement: High intensity relativistic optics

The pulse duration can be measured by using an auto-correlator which uses a non-linear
crystal producing the second harmonic of the laser frequency. The temporal information is
translated into a spatially varying signal, from which shape the pulse duration can be de-
duced.

The focal area can be measured with a CCD-camera by using a lens of appropriate magnifi-
cation. Then we can calculate the intensity of the pulse by using equation (1.14).

Solution 3: An alternative method is for example nonlinear thomson scattering, where a
relativistic electron is accelerated by an intense laser pulse and is scattered elastically. By
measuring the emission angle θ of the electron we can calculate the intensity as

I0 = 0.28

[
ω0meγsin(θm)

1+cos(θm)

]
·1020 W

cm2
. (1.15)
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Second Exercise High intensity relativistic optics

2 Second Exercise

2.1 Pressure by the ponderomotive force

Focusing a fraction of the JETI laser pulse containing a power of a 1TW to a spot of 50µm in
diameter onto a solid surface, suffices to create a plasma. The plasma will also be heated and
consequently tries to expand. The ponderomotive force of the beam mainly acting on the
region of critical density pushes the plasma back and causes a modification of the plasma
density profile-abrupt changes of the density value corresponding to a spatial shift of the
critical density value become observable.

a) How much pressure is exerted by the ponderomotive force and to which mass does
this correspond?

b) How large a density jump can be supported by the light pressure when the ion and
electron temperatures are assumed to be kB Ti = kB Te = 1keV.

a.) Solution: We assume a Gaussian transversal beam profile, where the intensity drops
to 1/e2 at d/2 = w0 = 50µm. We can write the profile as

I (r ) = I0 exp

(
−2

(
r

w0

)2)
, (2.1)

where r is the transversal coordinate (because this problem is cylindrically symmetric). The
total beam power can be calculated by integrating over the whole y-z-plane (propagation
direction in x)

P =
2πˆ

0

∞̂

0

I0r exp

(
−2

(
r

w0

)2)
dr dϕ , u = r 2, du = 2r dr

=πI0

∞̂

0

exp

(
− 2

w 2
0

u

)
du = π

2
w 2

0 I0, I0 = 2P

πw 2
0

. (2.2)

Now we can use the result from the first exercise I = ε0c/2|E |2 to find an expression for the
electric field in transversal direction:

E 2(r ) = 2

ε0c

2P

πw 2
0

exp

(
−2

(
r

w0

)2)
. (2.3)

In the lecture we derived the formula for the ponderomotive force

Fpond =− e2

4meω
2
L

∇⃗∇∇(E 2). (2.4)

In this coordinate system the gradient reduces to the derivative with respect to r , so that we
can write

Fpond =− e2

�4meω
2
L

�2

ε0c
�2P

πw 2
0

d

dr
exp

(
−2

(
r

w0

)2)
êr . (2.5)
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2.1 Pressure by the ponderomotive force High intensity relativistic optics

Now we can resubstitute the angular frequency ωL = 2πc/λ and perform the derivative

Fpond = e2λ2r

π3meε0c3

P

w 4
0

exp

(
−2

(
r

w0

)2)
êr . (2.6)

We can now insert all the known quantities into equation (2.6) and use the central wave-
length of the JETI laser system at λ= 800nm (Ti:Sa Laser)

Fpond = e2(800nm)2

π3meε0c3

1TW

(25µm)4︸ ︷︷ ︸
= ξ= 6,241 ·10−6 N

m

r exp

(
−2

(
r

w0

)2)
êr . (2.7)

For r = 12,5µm we get a ponderomotive force of

|Fpond| = 47,4pN, (2.8)

which corresponds to an acceleration of the electron of a = 5,2 ·1019 m
s2 . We can now obtain

an expression for the pressure if we multiply the result for the ponderomotive force to the
electron area density σ at the position r inside the beam.

b.) Solution: In order to calculate the density jump that can be supported by the light
pressure we assume the position in the beam, where the ponderomotive force is maximal

dFpond

dr
= d

dr

(
ξr exp

(
−2

(
r

w0

)2))
= ξ

(
1−4

r 2

w 2
0

)
exp

(
−2

(
r

w0

)2)
!= 0.

⇒ r = w0

2
. (2.9)

For that we have already calculated the ponderomotive force in (2.8). Now we demand an
equilibrium between the temperature pressure of the plasma outside the laser beam and the
temperature pressure with additional pressure exerted by the ponderomotive force inside
the plasma. The condition for that is

Fpondσ+ninkB T = noutkB T, (2.10)

where nin/nout denotes the electron density inside/outside of the laser beam. Now we want
to connect the electron area density at r = w0/2 to the electron density nin. For that consider
an infinitesimal hollow cylinder of length l with its symmetry axis in the laser direction. We
can write the number of electrons in the cylinder as

N =σ · Acyl or N = nin ·Vcyl

⇒σ= Vcyl

Acyl
nin = πr 2 l

2πr l
nin = r

2
nin = w0

4
nin. (2.11)

We can put this into (2.10) which leads to

Fpond
w0

4
nin +ninkB T = noutkB T

⇒ nout

nin
= 1+ Fpondw0

4kB T
= 1+ 47,4pN ·12,5µm

4keV
= 1.92. (2.12)

The ratio between the outer and inner electron density is approximately 2:1.
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2.2 Self focusing High intensity relativistic optics

2.2 Self focusing

Self-focusing of a cylindrically symmetric laser pulse of frequency ωL occurs when it propa-
gates through underdense plasma (ωL >ωp ). In steady state, the beam’s intensity profile and
the density depression by the beam due to the ponderomotive force are related by a force
balance. Prove the relation

n = n0 exp

(
− ε0〈E 2〉

2nc kB T

)
≡ n0e−α(r ), (2.13)

neglecting plasma heating (kB T = const.) with nc = ω2
Lε0me /e2 being the critical density of

the plasma. The quantity α(0) is a measure of the relative importance of the ponderomotive
pressure to the thermal pressure of the plasma.

Solution: We can prove the relation by assuming that the distribution function for elec-
trons is Maxwellian having the following form:

fe (ve )dv = A ·exp

(
−1

2

me v2

kB Te

)
dv . (2.14)

Here, fe (ve )dv describes the number of electrons per unit volume dV with velocities v .

In the lecture we also showed that the averaged kinetic energy of the electron is equal to the
ponderomotive potential

Ekin = 1

2
me〈v2

e 〉 =
1

4

e2

meω
2
L

E 2
0 =:ϕpond. (2.15)

Now we boldly assume that by inserting the averaged velocity square 〈v2〉 into the Maxwellian
distribution we obtain a value for the averaged electron density

ne = n0 exp

(
−1

2

me〈v2
e 〉

kB Te

)
, (2.16)

where n0 is the electron density for resting electrons. We can now use relation (2.15) and in-
sert it into (2.16). We get the electron density as a function of the ponderomotive potential

ne = n0 exp

(
−ϕpond

kB T

)
= n0 exp

(
− e2E 2

4meω
2
LkB T

)
. (2.17)

We can now insert the time averaged electric field, which was already calculated in exercise

one of the first sheet. We obtain 〈E 2〉 = E 2

2

ne = n0 exp

(
− e2〈E 2〉

2meω
2
LkB T

)
= n0 exp

(
− ε0e2〈E 2〉

2meω
2
Lε0kB T

)
, (2.18)

where we can identify the blue terms as nc which results in

ne = n0 exp

(
− ε0〈E 2〉

2nc kB T

)
. (2.19)
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Third Exercise High intensity relativistic optics

3 Third Exercise

3.1 Debye shielding

In a strictly steady-state situation, both the ions and the electrons obey a BOLTZMANN distri-
bution

n j = n0 exp

(
− q jφ

kB T j

)
, (3.1)

where j ∈ {e, i }. For the case of an infinite, transparent grid charged to a potential φ, show
that the shielding distance is then given approximately by

1

λ2
D

= n0e2

ε0

(
1

kB Te
+ 1

kB Ti

)
. (3.2)

Show that λD is determined by the temperature of the colder species.

Solution: In order to find an expression for the DEBYE length, we want to find the potential
φ(x). We start by using the POISSON equation

ε0∆φ= ε0
d2

dx2
φ(x) =−ϱ(x), (3.3)

where ϱ(x) is the charge density. We can write ϱ(x) as −e(ne (x)− Z ni (x)) with the electron
density ne (x) and ion density ni (x). Now we use the BOLTZMANN distribution (3.1) and as-
sume Z = 1 (for the case of hydrogen) leading to

ε0
d2

dx2
φ(x) = e(ne (x)−Z ni (x)) = e n0

[
exp

(
eφ

kB T j

)
−exp

(
− eφ

kB T j

)]
(3.4)

since qe =−e and qi =+e. If we now assume that thermal effects kB Ti dominate the poten-
tial energy, meaning eφ(x) ≪ kB Ti we can expand the exponential function using exp(x) ≈
1+x

d2

dx2
φ(x) = e n0

ε0

[
(�1+ eφ

kB T j
)− (�1− eφ

kB T j
)

]
= e2 n0

ε0

(
1

kB Te
+ 1

kB Ti

)
φ. (3.5)

We can easily solve this differential equation which leads to the general solution

φ(x) =φ0 exp

(
+

√
e2n0

ε0

(
1

kB Te
+ 1

kB Ti

)
x

)
+φ′

0 exp

(
−

√
e2n0

ε0

(
1

kB Te
+ 1

kB Ti

)
x

)
. (3.6)

We note that the potential does not diverge for x → ±∞. For x < 0 we take the first part,
whereas for x > 0 we take the second part of the sum (3.6). We can rewrite this as

φ(x) =φ0 exp

(
−

√
e2n0

ε0

(
1

kB Te
+ 1

kB Ti

)
|x|

)
. (3.7)
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3.2 capacitor with plasma High intensity relativistic optics

The DEBYE length is defined as the distance, for which the externally applied electric poten-
tial in the plasma is reduced to 1/e of its peak value. Therefore we find

φ(x) =φ0 exp

(
− |x|
λD

)
, ⇒ 1

λ2
D

= e2n0

ε0

(
1

kB Te
+ 1

kB Ti

)
. (3.8)

If we now look at the expression for the DEBYE length (3.2), we see that it depends inversely
on both temperatures of the electrons and the ions. However, the species with the lower
temperature, has a bigger contribution to the expression (3.2) and will dominate the other
term. Therefore the species with the lower temperature value will determine λD .

3.2 capacitor with plasma

The plates of a rectangular capacitor are at a potential difference of ±φ0 and at a distance
of 2R. The capacitor is filled with a plasma, which has a Debye length of λD . What is the
potential and the electric fields between the capacitor plates?
Discuss the limits of R ≫λD and R ≪λD .

Solution: Since it is not specified in the task we assume that the capacitor plates extend
infinitely in the y-z-plane and are positioned at ±R with distance 2R. For x <−R and x > R
we assume solid metal, which leads to the following boundary conditions for our problem

φ(x) =
{
−φ0 x ≤−R

+φ0 x ≥+R
. (3.9)

A capacitor plate at x = −R is not inherently different to a charged mesh of plasma with a
potential φ. Therefore we assume that the capacitor plates just act as two meshes at x =±R.
For a single mesh positioned at x = 0 we now how the potential for a given DEBYE length
looks like:

φ(x) =φ0 exp

(
− |x|
λD

)
. (3.10)

We can now superposition the potentials for both capacitor plates and shift them to x =±R.
This leads to

φ(x) =−φ̃exp

(
−|x +R|

λD

)
+ φ̃exp

(
−|x −R|

λD

)
for −R < x < R. (3.11)

We note that |x +R| = x +R and |x −R| = R −x.
By demanding φ(R) ≡φ0 we find an expression for φ̃

φ(R) =−φ̃exp

(
−2R

λD

)
+ φ̃=φ0

⇒ φ̃= φ0

1−exp

(
−2R

λD

) . (3.12)
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3.2 capacitor with plasma High intensity relativistic optics

We can summarize that into

φ(x) =−φ̃exp

(
−x +R

λD

)
+ φ̃exp

(
−R −x

λD

)
for φ̃= φ0

1−exp

(
−2R

λD

) . (3.13)

We can now calculate the electric field by using E = −∇⃗∇∇φ(x) which corresponds in 1D to
E =− ∂

∂xφ(x)êx

E (x) =− φ̃

λD
exp

(
−x +R

λD

)
− φ̃

λD
exp

(
−R −x

λD

)
êx

=− φ̃

λD

(
exp

(
− x

λD

)
+exp

(
x

λD

))
exp

(
− R

λD

)
êx

=−2φ̃

λD
cosh

(
x

λD

)
exp

(
− R

λD

)
êx . (3.14)

Limit discussion We can now discuss the limits R ≫ λD . For very big R we see that the
exponential function in (3.13) falls very quickly when you move away from the plates and is

zero everywhere else. The electric field is also zero everywhere, because exp
(
− R
λD

)
is small:

φ(x) → 0 and E (x) → 0. (3.15)

This case corresponds to a material with a very small DEBYE length, i. e. a metal where the
free charges immediately neutralize the potential at the capacitor plates.

The second limit is R ≪ λD . Here we have small arguments in the exponential function,
hence we can approximate exp(x) ≈ 1+x:

φ(x) =−φ̃
(
1− x +R

λD

)
+ φ̃

(
1− R −x

λD

)
= φ̃

(
x +R

λD
− R −x

λD

)
= 2φ̃

λD
x. (3.16)

Correspondingly for the electric field

E (x) =−2φ̃

λD
cosh

(
x

λD

)
︸ ︷︷ ︸
=1+O(x2)

exp

(
− R

λD

)
êx

=−2φ̃

λD
exp

(
− R

λD

)
êx = const. (3.17)

This case corresponds to the classical solution of a capacitor in a vacuum with a linear po-
tential φ(x) and a constant electric field between both plates. Here, the DEBYE-length is too
huge to shield the external field of the capacitor at all. The plasma acts like a vacuum.
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Fourth Exercise High intensity relativistic optics

4 Fourth Exercise

4.1 Plasma frequency with massive ions

Improve the derivation of the plasma frequency ωp by taking into account the mass of the
ions. Assume that the ions in the ion layer all move together.

Solution: Similarly to the electrons we need to solve the equation of motion and the con-
tinuity equation for the ions:

mi

[
∂vi

∂t
+

(
vi
∂vi

∂x

)]
=+eE (4.1)

∂ni

∂t
+ ∂

∂x
(ni vi ) = 0, (4.2)

whereas Poisson’s equation remains unchanged

ε0
∂E

∂x
= e(ni −ne ). (4.3)

We also make a linearized ansatz for the density, electric field and velocity for both ions and
electrons:

ne = n0 +n1 ni = n0 + ñ1 nα = nα,0 ei[kx−ωt ]

ve = v1 ni = n0 + ñ1 vα = vα,0 ei[kx−ωt ] (4.4)

Ee = E1 Ei = E1 Eα = Eα,0 ei[kx−ωt ].

Analogously to the lecture we find the linearized differential equations for (4.1) and (4.2) (by
cancelling out the exponentials and neglecting higher orders) as

−iωme v10 =−E10 −iωmi ṽ10 =+E10 (4.5)

−iωn10 + ik n0 v10 = 0 −iωñ10 + ik n0 ṽ10 = 0. (4.6)

We can use both equations to find an expression for n10 and ñ10

n10
(4.6)= k

w
n0v10

(4.5)= −i
k e

ω2me
n0E10 (4.7)

ñ10
(4.6)= k

w
n0ṽ10

(4.5)= +i
k e

ω2mi
n0E10. (4.8)

We can now insert the results into (4.3)

ikE1 = e

ε0
(ni −ne ) = e

ε0
[(��n0 + ñ1)− (��n0 +n1)]

⇒ �i��k��E10 = e

ε0
[ñ10 −n10]

(4.7)=
(4.8)

e

ε0
�i
��k e

ω2�
�E10n0

(
1

mi
+ 1

me

)
. (4.9)

Therefore we can conclude for the plasma frequency ω→ωp

ω2
p = e2 n0

ε0

(
1

mi
+ 1

me

)
⇒ ωp =

√
e2 n0

ε0

(
1

mi
+ 1

me

)
. (4.10)
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4.2 Potential of electric charge and ion background

Calculate the potential φ(r ) of a system comprising an electric charge q at the origin, an im-
mobile, homogeneous ion background and an electron distribution treated as a fluid char-
acterized by a certain temperature Te , which is in thermal equilibrium with the generated
electro static potential φ(r ). Start with a discussion on the assumption of a fixed ion back-
ground. Which conditions validate this assumption?

Solution: In order to calculate the potential we again start by using POISSON’s equation
∆φ(r ) = −ϱ(r )/ε0. First we need to write down an expression for the charge density ϱ(r ).
We write the positive ion background as the constant density ϱi = e ni . We want to justify
this step by saying that the ions (even for Z = 1 the hydrogen ion is 1836 times heavier than
the electron) are much heavier than the electrons and will not be moving as much as the
electrons due to their higher inertia. This assumption of static ion background is further
justified by the condition, that the ion temperature Ti is smaller than Te in a normal plasma.
The electron distribution can be written down analogously to the lecture and the last exercise
sheet as

ne (r ) = ne0 exp

(
eφ(r )

kB Te

)
. (4.11)

The charge in the origin can be described by a Delta Distribution ϱq = qδ(r ). We can com-
bine all charge densities to obtain

ε0∆φ(r ) =−qδ(r )−e

(
ni −ne0 exp

(
eφ(r )

kB Te

))
. (4.12)

We note that this differential equation for r > 0 looks similar to the Poisson equation for the
Debye-shielding with ∆φ(r ) = φ(r )

λ2
D

with the solution

φ(r ) =φ0 exp

(
− r

λD

)
. (4.13)

Therefore we can rewrite (4.12) as

∆φ(r )− φ(r )

λ2
D

=− q

ε0
δ(r ). (4.14)

The Delta part of the Poisson equation can be solved by using the known Green’s function
for the Laplacian operator

∆G(r ) = δ(r ) with G(r ) =− 1

4π

1

|r | . (4.15)

We can combine both solutions of the differential equation into a single potential

φ(r ) =− q

4πε0

1

r
exp

(
− r

λD

)
. (4.16)
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4.3 Deflection of a pulse

Consider a laser pulse obliquely incident on an exponential plasma profile, i. e. its (one-
dimensional) density distribution as a function of the distance from the target surface, x,
can be described by ne (x) = ne,0(x)exp

(−|x|/Lp
)
, where the target extends from x = 0 to

larger values of x. There is no dependence of the density on the transverse dimensions (1D-
situation). Lp is called the plasma scale length. How does the deflection of the pulse look
like? Will the laser pulse reach the critical density?

Solution: We start the discussion by assuming that the laser beam is incident under an
angle θ on the target. We can now describe the trajectory of the laser beam inside the plasma
by using the refractive index defined as

η=
√

1− ω2
p

ω2
, (4.17)

where we use the density ne dependent plasma frequency

ω2
p (x) = ne (x)e2

ε0m
⇒ η=

√
1− e2

ε0mω2
ne0 exp

(
−|x|

L

)
. (4.18)

We can see that the refractive index decreases for larger plasma densities. We will therefore
observe that the beam is diffracted away from the target to larger angles until it may eventu-
ally propagate parallel to the target surface. This is illustrated in figure 1. In order to estimate,

x

y,ne

ne ∼ e−
x
L

laser beam

θ

Fig. 1: Deflection of a laser beam with incident angle θ in a plasma.

whether or not the laser beam reaches the critical density of the plasma, we start by using
Snell’s law for diffraction which states

η(x)sin
(
φ(x)

)= const. (4.19)

The boundary condition for this is the incident angle θ at which our plasma is sufficiently
underdense, so that we can estimate η≈ 1. Now we want to find the position x at which the
laser beam will be deflected parallel to the target at φ= 90◦:

sinθ = η(x)sin
(
φ(x)

)︸ ︷︷ ︸
=1

. (4.20)
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We now abbreviate the constants in (4.18) as α

η=
√

1−αexp
(
−x

L

)
!= sinθ⇒ exp

(
−x

L

)
= 1− sin2θ

α
. (4.21)

We note that the critical density ncrit of the plasma is given as

ncrit := ω2ε0m

e2
⇒α= ne0

ncrit
. (4.22)

Now we can solve the equation (4.21) for x

x =−L ln

(
cos2θ

α

)
=−L ln

(
cos2θ

ncrit

ne0

)
=−L

[
ln

(
cos2θ

)− ln

(
ncrit

ne0

)]
. (4.23)

Using ncrit = ne0 exp(−xcrit/L) we find

x =−L
[

ln
(
cos2θ

)− xcrit

L

]
⇒ x −xcrit =−L ln

(
cos2θ

)︸ ︷︷ ︸
<0

. (4.24)

We can see here that for reasonable angles 0 < θ < π
2 the difference x − xcrit is greater than

zero. Therefore we can conclude that the laser beam does not reach the depth xcrit, where
the plasma is critical.

The only case, where x = xcrit is achieved is, when ln(cosθ) = 0, which is true for θ = 0.
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5 Fifth Exercise

5.1 Over the barrier ionization

When the laser intensity starts to get close to the so-called atomic intensity, which is the
intensity associated with the atomic field strength as experienced by an electron on the first
Bohr orbit in a hydrogen atom, the laser field becomes strong enough to distort the Coulomb
field felt by the hydrogen atom’s electron. Consider a modification of the Coulomb potential
by a stationary, homogeneous electric field and determine the associated threshold intensity
I of a laser pulse having this electric-field amplitude at which over-the-barrier ionization
(OTBI) sets in. Why is the required electric field strength of the laser smaller than the atomic
field strength, i. e. the field which binds the electron to the nucleus?

Solution: We assume that the Coulomb potential is modified by a homogeneous electric
field E0 · r . We therefore obtain the following potential:

Φ(r ) =− Z e

4πε0r
−E0r. (5.1)

The potential is depicted in figure 2. In order for OTBI to take place the potential must be

r

Φ(r )

Fig. 2: Modified atomic potential (blue) through an external electric field vs. the undisturbed atomic
potential (grey).

modified in such a way, that the electron of the hydrogen atom can escape the potential well.
Therefore the maximum of the potential (r > 0) must be pushed to the ionization energy of
hydrogen at 13,6 eV. We try to find the maximum of (5.1):

dΦ

dr
= Z e

4πε0r 2
−E0

!= 0. (5.2)

We find the radius where the potential is at its maximum at

r 2
0 = Z e

4πε0E0
⇒ r0 =

√
Z e

4πε0E0
≈ 2Å. (5.3)
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We now demand, that the energy value e ·Φ(r0) must be the ionization energy of the hydrogen
ground state. This leads to

qΦ(r0) =−
√

Z eE0

4πε0E0
−

√
Z eE0

4πε0E0
=−

√
Z eE0

πε0E0

!=−Eion. (5.4)

Solving this for the electric field amplitude E0 yields

E0 = (Eion)2

e2

πε0

Z e
Z=1= 3,211 ·1010 V

m
. (5.5)

Now we can use the formula for the intensity that was derived in exercise sheet 1

I = ε0c

2
|E0|2 = c ·ε0

32

(4πε0)2

e6Z 2
(Eion)4 . (5.6)

Inserting the numerical value of (5.5) gives the result of

Iion = 1,37 ·1014 W

cm2
. (5.7)

If we compare the electric field amplitude to the field strength the nucleus exerts onto the
electron we will find

E = 1

4πε0

e

(0,5Å)2
= 5,76 ·1011 V

m
. (5.8)

We can see, that the electric field needed for over-the-barrier ionization is one order of mag-
nitude smaller than the electric field which binds the electron to the nucleus. The reason
is that the external electric field doesn‘t have to bend the potential all the way from zero to
negative 13,6eV, because the undisturbed potential at r = r0 corresponds to an energy of

e ·Φ0(r0) =
√

Z eE0

4πε0E0
=−6,8eV. (5.9)

The electron is ionized before it has the energy 0eV, therefore the external field can be smaller
than the atomic field.

Another possible explanation is that the electron gains additional energy from the external
field until it reaches r = r0.
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5.2 Self-focusing

A plasma with quasi-free electrons having a density of ne,0 interacts in different ways with
a high-power laser pulse propagating through it. Discuss qualitatively how ponderomotive
self-focusing as well as relativistic self-focusing occur. Which thresholds might play a role
and what are possible limitations to the different effects? How do ionization effects influence
the propagation of the laser pulse?

Solution: The process of self-focusing of a laser pulse in a plasma can be due to pondero-
motive forces or relativistic effects. We start by discussing the relativistic effects:

Due to the Gaussian shaped transversal intensity profile of the laser pulse, the plasma expe-
riences different values of the normalized vector potential a0. Due to

〈
γ
〉= 1+

〈
a2

0

〉
2

(5.10)

this leads to a spatial variation of the relativistic γ-factor of the electrons. Because the rela-
tivistic mass m = me,0 ·γ is proportional to γ, the mass of the electrons near the propagating
axis will be higher. Considering the plasma frequency and the refractive index

ωp =
√

ne e2

ε0 m
and η=

√
1− ω2

p

ω2
(5.11)

a larger mass leads to a smaller plasma frequency and a higher refractive index η. The higher
refractive index in the centre of the beam now acts like a convex lens which will focus the
laser beam. The focusing is balanced by natural diffraction which increases for smaller beam
diameters. In the lecture we derived relation describing the threshold, at which relativistic
self-focussing occurs:

w 2
0 a2

0 ≥ 16
c2

ω2
p

. (5.12)

For larger values w 2
0 a2

0 relativistic self-focussing plays a role.

Now we discuss the effect of ponderomotive self focusing. We again assume a higher inten-
sity on the propagation axis of the beam. This leads to a higher ponderomotive potential

ΦPond := e2

4meω
2
L

Es ∝ IL . (5.13)

The higher ponderomotive forces pushes the electrons away towards smaller intensities which
will decrease the density of electrons on the beam axis. Considering (5.11) this also leads to a
smaller plasma frequency, thus increasing the refractive index. This causes the same focus-
ing effect of the laser beam which is balanced by diffraction.

The pulse propagation is also influenced by ionization effects. The high intensity on the
beam axis leads to more ionization processes which increase the electron density. Following
the same arguments as before the increased density leads to a higher plasma frequency and a
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5.2 Self-focusing High intensity relativistic optics

lower refractive index on the beam axis. This acts a concave lens causing defocusing effects.
The beam gets defocused before it reaches the position of the vacuum focus. This effect is
called ionization defocusing. This effect is limited by a depletion of ionized atoms. If all
atoms are already ionized a higher laser intensity will not increase the defocusing effects.
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