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Mirror waveguide Fiber Optics

1 Mirror waveguide

The slab mirror waveguide relies on a symmetrically embedded high refractive index film
(dispersionless, refractive index n, film thickness d) sandwiched between two perfect met-
als.

1.1 Wave equation for TE-polarization
Derive the wave equation for the mirror waveguide in TE-polarization for the y-component
(in Cartesian coordinates) of the electric field assuming:

* a harmonic ansatz

e translational invariance along the y-direction

* propagation along the z-direction

* TE-condition: Ex=E,=H, =0

Solution:

Using the assumptions above we can formulate an ansatz for the electric field amplitude
E(x,y,2) = Ey(x, 2)elPZe e, (1.1)
Now we can use Maxwells equations

o 0 - 0 0
VXE——alJoH and VXH—&D—EQEEE (1.2)

to derive the wave equation. Applying the curl to Faradays law gives us

L. L. 9 (.
Vx(VXE):V(V-E)—AE(liz)—MOE(VxH)
——
=0
02
- _ ZE 1.3
Koot 572 (1.3)

2
/¢

Using the harmonic ansatz of the electric field we can substitute the time derivative with
"—iw" and find

w2
(A+£? E(x,y,2)=0

0

CUZ
Ar—pB°+e— |Ey(x,2) =0. (1.4)
C,

0




1.2 Wave equation for TM-polarization

Fiber Optics

1.2 Wave equation for TM-polarization

Derive a similar wave equation in case of TM-polarization for the y-component of the mag-
netic field using the same assumption and the polarization conditions complementary to

the TE-conditions.

Solution:

We now need to consider the magnetic field H. Similar to equation (1.3) we take the curl on

Amperes law

L .. 0 -
V x (v x H) —VV-H-AH"? 808—(V x E)
= o
62
o ey 7
Hofot 5

2
1/¢y

Analogously to the task before we can than derive the wave equation as

w?
Ai—B°+e— |Hy(x,2) =0.
%

(1.5)

(1.6)




1.3 Dispersion equation for TE-polarization Fiber Optics

1.3 Dispersion equation for TE-polarization

Use the following ansatz for the modal fields to find the dispersion equation in TE-polarization
taking into account the boundary conditions

d
Ey:E?,cos(ka) and Ey(x:iz):o. 1.7)

What happens to the dispersion relation in case of the anti-symmetric mode?

Solution:
Substituting ansatz (1.7) into (1.4) yields
2

E)O, cos(k x) = (—ki - ,32 +£w—2
0

Eg cos(k, x) = 0. (1.8)

2

)

AP re—
0

In order to always fulfill this equation the following must hold:
w>
ki +p*=e—=k* with k=nk. (1.9)
%o

Using the boundary condition we have
d d =
cos(ikLE):O > kLE:§+nn with neNy

= k—2(+1)—n ith =1,3,5 (1.10)
J_—dﬂl’lz—dm wi m=1,3,5,... .

Then we can solve (1.9) for  and find

2
_ Jrz g2 =2z (T ) _ | mr
p=1\/k2 -k =/ n2k2 (dm) = nko\[1 (dnko). (1.11)

If we now introduce an effective index neg = k% we find the disperion equation of a mirror
waveguide

2
Y4 .
) with m=1,3,5,... (1.12)

= 1-—
Neff = N (dnko

For the anti-symmetric mode m will take even values m = 2,4,6,...




1.4 Propagation constant Fiber Optics

1.4 Propagation constant

Plot the propagation constant as function of wavelength for the three lowest order modes
(n=1.45,d =2um,0.5 < A < 6um). Derive general expressions for the cut-off wavelength (at
which = 0) and plot the cut-off wavelength for the mode order (combining solution of TE-
and TM-polarization) 1 < m <5 for the above mentioned parameters.

2015 L =1

15 |

10 +

>

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Fig. 1: Propagation constant as a function of wavelength for the three lowest order modes for a glass
mirror guide.

The cut-off wavelength can be determined by setting (1.11) to zero:

0=1/1 (m”)z L (1.13)
- dnky ~ 2dn " om '
Ainpum
61 ®
4,,
[ ]
21 )
} + I .; ® m
1 2 3 4 5

Fig. 2: Cut-off wavelength A, as a function of the mode order.




1.5 Group velocity dispersion Fiber Optics

1.5 Group velocity dispersion

Derive analytic equations for the group velocity dispersion and show that causality holds.
Plot the relative group velocity (vg/ co) as a function of wavelength for the configuration de-
fined in Exercise 1.4. What happens close to the cut-off.

Solution:

The group velocity is given as

dw 1 df d|n mrc2
g=— = —=-t=—|lo1-(2=)) (1.14)
dg vg do dolc dnw

For a shorter notation we summarize the constants % into a new constant @. Then we can

n
formally calculate the derivative'

dg n 2 e 1 a® a?) n 1
—=—|\{/l1-—=+w = 1 +—|= (1.15)
do ¢ w? o2 c o W @) ¢ [[_a
T w? T w? T w?
Thus the group velocity dispersion is
-1
dw n 1 c /i ( mm )2 (1.16)
Vog=—=| ———— = — - . .
$Tdp e 1@ n dnk
w?
0.8 ”Vg/C() _m:l
—m=2
m=3
Ainum

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Fig. 3: Relative group velocity as a function of wavelength for the previously defined configuration.
Close to the cut-off the relative velocity drops down to zero very quickly.

11t is much easier to put w into the square root, then we don “t have to apply the product rule.




The symmetric planar slab waveguide Fiber Optics

2 The symmetric planar slab waveguide

Given is a symmetric dielectric slab waveguide in TE polarization (see sketch below). The
propagation direction is along the z-axis and the waveguide is invariant along the y-direction.
The modes in this structure are given by:

y
Nc)
z
Nco Y
X
Nl

Fig. 4: Geometry of the planar slab waveguide

Ae_YI (X—Q) x> Q
E, =< Bsin(kx) + Ccos(kx) 0<x<p (2.1)
De?3* x<0

2.1 Derivation of y;,y; and «

Use the wave equation to derive expressions for yy,ys and x.

Solution:

We can formulate the wave equations as follows:

02
(_dxz +n2 ks - ,Bz)E(x) =0 (2.2)

2
(% +nZ kg — ,Bz)E(x) =0. (2.3)

Using the ansatz for the fields (2.1) we can find

k*=n2 ki—p* and yi=yi=p"- nglkg. (2.4)




2.2 Boundary conditions Fiber Optics

2.2 Boundary conditions

Write down the boundary conditions for this waveguide configuration.

Solution:

The boundary conditions are obtained by demanding continuity of the transverse electric
fields and their derivatives at the two interfaces. At x = 0 we find

De”3% = Bsin(x0) + Ccos(x0) = D=C (2.5)
Dy3e"%® = Bk cos(k0) — Cksin(k0) = Dys= Bxk. (2.6)

For the boundary at x = p we find

A= Bsin(kp) + Ccos(xp) 2.7)
— Ay = Bx cos(kp) — Cxsin(xp). (2.8)
2.3 Dispersion relation

Derive the dispersion relation of the modes of this slab waveguide configuration. The final
expression should have the form

2K
2 _l};,z = tan('KQ) with Y=7Y1=73. (2.9)

Solution:

We start by equating equations (2.7), (2.8) and using Cys = Bx

Bsin(xp) + Ccos(xp) = cx sin(kp) — B cos(xp)
71 71
K Bx? Bx
= Bsin(xp)+ —Bcos(kp) = sin|xp) — — cos|k
(xe) » (xe) — (Q)Y1 (xe)
:>(1— K )sin(K )——K(i+i)COS(K )
Y173 © Y1 73 €
2
Y13 =K . B (7’1+Ys)
=12 sin(kp) = —x| ——=|cos(x
y, Sine) s ) coste)
Yi+ys 2Ky

= tan(kp) =« (2.10)

K2=y1ys  K2—y?




2.4 Effective indices Fiber Optics

2.4 Effective indices

Plot the right- and left-handed side of the dispersion equation as a function of neg for p =
5um, Ay = 1um, ne, = 1.5, ng = 1.45 within the range ng < negr < neo. Remember that neg =

kﬁ. Find or read off the effective indices of the fundamental mode and the two next higher-
order modes.

We can modify the relations (2.4) as a function of the effective index
K% = ké(ngo - nﬁff) and yz = ké(neff— ”31)- (2.11)

Substituting this into (2.10) results in

2./ (%, —n2)(n%.—n%) 2./(n% —n3)(n%.—n)
tan(kog\/r) \/ co ~ Mg Mege cl _ \/ co eff’ " eff cl . 2.12)

_ 2
(ngo — nZy) — (N2 — 1) NG —2nZy+ ng

We can now find the solutions in a graphical way as displayed in figure 5.

20
tan(ke)
15 Fh?i“r’
10 f
5 -

~10 N

_20 1 1 1 1 1 1 1

2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24
effective index

—15

Fig. 5: Plot of the left hand side and right hand side of (2.12). The three solutions we can obtain
are n; = 2.139 (fundamental mode), n3 = 2.220 (first higher mode), ny = 2.242 (second higher
mode).

2.5 Poynting vector

Calculate the transverse Poynting vector distribution of the three modes discussed in the
previous task. Use S, = %Re(E x H*).

10



2.5 Poynting vector Fiber Optics

Solution:
We can rewrite the Poynting vector using |H| = fo—‘;ffo | E|
1 n EoN
S, = —Re(E x H*) = — | g2 = 20°¢ff 12, (2.13)
2 Colo

11



Optical fiber Fiber Optics

3 Optical fiber

3.1 Transverse EM-components

Show that all transverse EM-components depend on the longitudinal components E, and
H,. Use Maxwells equations

Vx H-= —iweegE and VxE-= iwuoH (3.1)

in cylindrical coordinates.

Solution:

We start by explicitly writing down the curl operator in cylindrical coordinates

[laHZ 0Hy é OH, _OH, &+ 0 (rH,y) OH, é, = —iweeoE 3.2)
rop 0z | oz or | ¥ rlort Y o |7 0 '
]. aEZ aE(p ~ aEr aEZ ~ ]. [ a aEr A .
z . - +—|—(rE,)—— &, = H. 3.3
[r op 0z 1%z "ar %7y dr(r o) (o7 Gz =10 69

Furthermore we want to assume fields of the form E(x, y, z) = u(x, y)eiﬁz with a phase factor
B = nerkp. From that we can read of the transverse components of electric and magnetic
field:

i [10H, . i aHZ]
E, = — —iBH, E,= H, - 3.4
" weeg | T op hH,y 7 weeg pH; or (34)
1 10E, . 1 . GEZ]
= —_ —_ E H = E - 35
" iwug | T 0 1PE, i [I'B " oor 85

For the radial component of the electric field (3.4) we substitute the ¢ component of the
magnetic field (3.5) and find with ky = w/ ¢y

i 10H. OE
Eo=— |12 P ligp ]
weeyg [T 0  wly or
2 i [10H. o0E 1
(1_ b )E,: | [19H. P ] with &= ——
w?eeg oy weey [ r dp  wuy Or Ho€o
n2
-t
icp 1 1 0H, B aEz]
Er:_ > +
WE | _ M [ €0CoT 0p  wcology OF
£
. i 1 aHZ+n aEZ] (3.6)
r_ko(E—ngff) EpCol 6(,0 eff or '

12



3.2 Application of boundary conditions Fiber Optics

We can also find the ¢ compoenten of the magnetic field by substituting E, instead
1 10H
Hy=- [_ g = —iBH,
iwpg | weeg | T O

2
(1_ 2,6 )Hw_-l [ B 10H, OEZ]
W HoEpE 1w o

GEZ]
or

CweegT op Or

|, e[ B 10H: e OEZ]
€ Y we weoloEo T 0@  CcopMy OT
—i OH. OE
H(p:—l2 niff—z+£eoco Z]. (3.7)
kote—nip) L 1 op or
The other two components can be derived analogously and are:
r 0@ €gycy Or
0H. OE i
H, = K(neff z EENCo z) with K= ;2 (3.8)
or r o0 ko(e — o)

3.2 Application of boundary conditions

Use boundary condition BC3 (A = Ag) and BC4 (A = Ag) to find expressions for A. Use the
relation

WL _ L= _
T (x) = x]m(X) Jm+1(x) and K, (x)= me(X) Km+1(x). (3.9)

Solution:

We start by writing down the two boundary conditions
BC3: EX° =Ej  BC4: HY’ = HY (3.10)

Furthermore we want to list again the ansatz functions for the z-component of the fields:
Now we take the expressions from Task 1 and insert the ansatz vor the fields E; and H,. We

Table 1: Ansatz functions for the longitudinal fields. Note that B = 1 since only the ratio between A
and B is relevant.

E, H,
IJm(UR) Jm(UR)
core AK]%W%{) os(me) K]m(%%)sm(m(p)
cladding Amcos(m(p) QW) sin(me)

13



3.3 Dispersion relation

Fiber Optics

start with BC3 (r =p,R=1)

o Neff OE, 1 0H,
Ey = Koo o o +£Oco or )

Neff O 1 0 [JnU)
= —Keo —T@[Agcos(m(p)] + ceor | @)
= —Keo niffmAEsin(m<p)+ ! sin(m(p)[m

r £0CoQ

E(‘;lé —~ Cl(niffmAEsin(m(p)+ sin(m(p)[m

r €0CoQ

We can solve this equation for Ag

sin(me) (_ K W) o T (U) U)

£0CoQ K (W) Jm(U)
AE: Neft .
> msin(me)(Kq — Keo)
_ 1 ( le+1(W) o Jma(U)
£0C0MettM (Kot — Keo) U K (W) “ Jm(U)
We repeat all steps with BC4 (r =p,R=1)
A
H(f)o = KCO(%ﬁm +£000£CO?Hg)s€mﬂ[m
! Ag
HlLk (@m + €0CoE—C [m——W
) cl 0 0¢0€cl 0 W K (W)

Again, solving for Ay yields

Ay = (Ke = Keo) Megrm
H pu—

sin(m(p)])

I (U)
Im(U)
_ Km+1 (W)

Im(U)
Im(U)
Km+1(W)

M(Eco — Ecl) + KclgclLW — Kco€co

EnC
0% Ky (W)

3.3 Dispersion relation

Determine the dispersion relation of the optical fiber by setting Ap = Ay.

Solution:

We first start by rewriting K., and K in terms of U and W

kop?i
UZZQZ(kgeco_ﬁz) = KCO:OU—Q2
kop?i
W? = p*(kgea—f°) = Ka=- 552-

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

14



3.3 Dispersion relation

Fiber Optics
Then we equate (3.12) and (3.14)
[ Kp+1(W) Jm+1(U)
(Ko — Kco)z(nos‘ffn’l)2 = chlm _KCO#EII)U]
[ K1 (W) Jm+1(U)
Lm(gco_gcl)‘FKclScl K,y (W) W — Keo€co 7.0 U]
(L+L)2m m)z_’_Kmﬂ(W)_fmﬂ(U)]
vz wz) Y T T WKW U )
'm(g e Km+1(W)_8 Jm+1(U)
L co cl cl WKm(W) co U]m(U)
( v )4(neffm)2:'Km+1(W) +]m+1(U)]
Uuw Nco | WK,,,(W) U]J,,(U)
. 2
na \“ Kipe1(W) T (U)
_ B ) 1
|77l = £co) (n) WK W) U (0) 319

15



Weakly guiding fibers Fiber Optics

4 Weakly guiding fibers

4.1 Cut-off condition

Show that in weakly guidance approximation, the cut-off condition for the first higher-order
mode is given by 0 = Jo(V).

Solution:

We can use the dispersion equation of weakly guided fiber modes

UJi-1(U) __ WK1 (W)
J1(U) K;(W)

) (4.1)

where we consider the first order solution (I = 1). At the cut-off the modes get completely
localized. This happens when W? o % — kg né =0and thus U = V. Then we find

UloU) B
W =0 = ]O(V) =0 for V # 0. (42)

4.2 Cut-off numbers

Show that the cut-off numbers are given by X;,,, = (1 +2m)Z%, using the approximation

J1(X) = icos(X—(l+1)z) 4.3)
N 2)2) '

which holds for large values of X (multi-mode fiber).

Solution:

From the first task the cut-off condition is given by J;(X) = 0. Thus we set (4.3) to zero and

)
2

b/ 3
:>X:—(2m+l+—). (4.4)
2 2

1
Ozcos(X—(l+—
2

b/ 1\7
3mn+—:X—(l+—)—
2 2)2

For large values of X the term 3/2 can be neglected compared to the other terms. This leads
to

b4
X= §(2m+l). (4.5)

16



4.3 Effective index Fiber Optics

4.3 Effective index

Show that the propagation constant is analytic, using the definition of U and the assumption
that U = X;,, (vertical lines in dispersion function diagram).

Plot n first as a function of m for | = 0(1 < m < 5) and second as function of | form =1(0 <
l < 4) using ny = 1.5,p0 =50um, A = 1 um. What can you say about the phase velocity?

Solution:

We use the definition of U and try to solve for

T
§(2m+ 1) = p\/ kinZ, — p?

2
ﬁ%ﬂﬁﬁ—£;@m+m. (4.6)

Now using f = nefrko we can conclude

2
T
nﬂ:¢%f( )Qm+m. 4.7)
20k
Neff e /=0 Neff e m=1
15| o 1.5 o .
[ ] [ ]
®
® ®
14 | 14 |
13| [ 13 |
l m
1 2 3 4 5 1 2 3 4

Fig. 6: Effective index of the weakly guided fiber for constant [ = 0 (left) as a function of m and for
constant m = 1 as a function of [.

By looking at figure 6 we conclude that the effective index decreases for higher order modes.
Since the phase velocity v, = ¢/ nest is inversly proportional to the effective index, it will in-
crease for higher modes.

17



4.4 Group velocity Fiber Optics

4.4 Group velocity

Derive an analytic expression for the group velocity, assuming that n, is wavelength inde-
pendent.

Solution:
The group velocity is given as vg = dw/df. We start with (4.6) and take the total derivative

2 2
2_Neo 2 T 2
= =0 -—@2m+l

2

Zﬂdﬁ:%z(udw

do ¢ p ¢ 2 ( T )2 2
= = — = —— = — Neg — | — 2m+l . 4.8
Vg B2k nz V" 20k ( ) (4.8)

Since the group velocity is proportional to the effective index, it will decrease for higher order
modes.

18



Pulse propagation Fiber Optics

5 Pulse propagation

5.1 Pulse envelope without dispersion

Derive the pulse envelope for the case of vanishing group velocity dispersion (GVD) in the
situation of a Gaussian pulse at input given by

F(t) = e_(%) g i@t (5.1)

Solution:

We start with the Fourier analysis as done in the lecture
o0
1 _ .
F(z, )= —— / F(z,w)e ™ dw, (5.2)
V27
—00

where F(z, ) is the Fourier component of F(z, t) at the frequency w. In the frequency do-
main we know the spatial evolution of F(z,w) namely

~ - . - 1 .
F(z,w) = F(0,w)eP®? with F(0,w)= — / F(0, et dr. (5.3)
vV 27r_
So then by substituting (5.3) into (5.2) we find
1 N , .
F(z,t) = — / F(0, w)elPz=iwd q., (5.4)
T

We start the calculations by first computing the Fourier transform of the input pulse using
the Gaussian integral given as

(o.0]
T
/dxe_“x2+bx =1/ —eta. (5.5)
a
—00

Then we find by using B(w) = Bo + B (w — wy)

o0
- 1 _(L]Z. ~ B,
FO,0)=— [ e i) @ lqr=1,/me” s @ 00"
\/271/
—o0

o0
2
T T v . ’
= F(z,1) = I;\/_ / dwe™ T @00 il(Bo+p (-wo)z-wt] (5.6)
T

—00

Now we perform a variable substitution @ = w — w¢ and find

o0

TZ
F(z, 1) _ T2V poz-ions / dpe™ Tl z-110 (5.7)
27
—00
(ﬁlz_t)z iwot
=exp|———— gPoz-iwot, (5.8)
Tp

19



5.2 Pulse envelope with dispersion Fiber Optics

5.2 Pulse envelope with dispersion
Derive the same envelope but now assume GVD # 0.

Solution:

Now with group delay dispersion f, # 0 we write f(w) = fo + (@ — wo) + 3 f" (@ — wo)? and
equation (5.7) modifies to

(e,0]
2
T . ™y - [l ! -
F(z,t) = Z_fel(ﬁoz—wot) /da_)e_przel[iﬁ 2% +(B z—t)w]’ (5.9)
—00

2
This is formally solved by setting a = %’” —3B"zand b=i(B'z - 1) in equation (5.5)
T 1 'z—n2\ .
F(z,t) = —p—exp —(fz—.) gl(Poz—wol) (5.10)
2 2 T, +2if"z
T 2Pz
5.3 Pulse width

Derive the position dependend pulse width and show that by using a pulse width level of
B =e™/4, the following equation results:

7(2) =Tp (5.11D)

Solution:

In order to find the pulse width we need to split the exponential in equation (5.10) into am-
plitude and phase

2.2
1 (t—2zpf1)°T 2zBs(t—2zB1)) - _
R exp(_ﬁ exp ‘% izt 6.12)
. zeps+T zeps+T —
1_1211[3_222 N '62 p /o ﬁz p /, carrier phase
i width change local phase influence

amplitude change

We only need to consider the change of width described by the real part of the exponential
term. For a pulse width level B = e~'/* we demand

2
T 1
P 1 (5.13)

4225+ 1), C1(2)%

Now we simply solve for 7(z)

7(2) = (5.14)

20



5.4 Cross over position for different initial pulse lengths Fiber Optics

5.4 Cross over position for different initial pulse lengths
Determine the cross-over position at which a pulse of initial width 7}, has a larger temporal

pulse width than a pulse with (TZ <1}). Assume the same GVD.

Solution:

Using (5.14) we can equate the two equations for different initial pulse lengths and solve for

z
2 2
T;JH(zzgz) :TZJH(zzgz)
Tp Tp
ay2 b2 2 1 1
= (15)% = (1) = (22f2) ( )

(th)?2 (15

1 @) - (h)?

2 _

=>z°=
2 1 _ 1
4P wh?  @p?
b
7T
—~gz=_PrP (5.15)
2062

21
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