FRIEDRICH-SCHILLER-UNIVERSITÄT JENA Physikalisch-Astronomische-Fakultät

PROF. MARKUS SCHMIDT

Fiber Optics

All Exercises

Summer term 2022

Name: MARTIN BEYER

Contents

1	Mirror waveguide	3
	1.1 Wave equation for TE-polarization	. 3
	1.2 Wave equation for TM-polarization	. 4
	1.3 Dispersion equation for TE-polarization	. 5
	1.4 Propagation constant	. 6
	1.5 Group velocity dispersion	. 7
2	The symmetric planar slab waveguide	8
	2.1 Derivation of γ_1, γ_3 and κ	. 8
	2.2 Boundary conditions	. 9
	2.3 Dispersion relation	. 9
	2.4 Effective indices	. 10
	2.5 Poynting vector	. 10
3	Optical fiber	12
	3.1 Transverse EM-components	. 12
	3.1 Transverse EM-components	. 12 . 13
	 3.1 Transverse EM-components	. 12 . 13 . 14
4	 3.1 Transverse EM-components	. 12 . 13 . 14 16
4	 3.1 Transverse EM-components	. 12 . 13 . 14 16 . 16
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 	 . 12 . 13 . 14 . 16 . 16
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 4.3 Effective index 	. 12 . 13 . 14 16 . 16 . 16 . 17
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 4.3 Effective index 4.4 Group velocity 	. 12 . 13 . 14 16 . 16 . 16 . 16 . 17 . 18
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 4.3 Effective index 4.4 Group velocity Pulse propagation 	. 12 . 13 . 14 16 . 16 . 16 . 16 . 17 . 18 19
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 4.3 Effective index 4.4 Group velocity 4.4 Group velocity 5.1 Pulse envelope without dispersion 	. 12 . 13 . 14 16 . 16 . 16 . 16 . 17 . 18 19 . 19
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 4.3 Effective index 4.4 Group velocity 4.5 Pulse propagation 5.1 Pulse envelope without dispersion 5.2 Pulse envelope with dispersion 	. 12 . 13 . 14 16 . 16 . 16 . 16 . 17 . 18 19 . 19 . 20
4	 3.1 Transverse EM-components 3.2 Application of boundary conditions 3.3 Dispersion relation Weakly guiding fibers 4.1 Cut-off condition 4.2 Cut-off numbers 4.3 Effective index 4.4 Group velocity 5.1 Pulse envelope without dispersion 5.2 Pulse envelope with dispersion 5.3 Pulse width 	. 12 . 13 . 14 16 . 16 . 16 . 16 . 17 . 18 19 . 20 . 20

1 Mirror waveguide

The slab mirror waveguide relies on a symmetrically embedded high refractive index film (dispersionless, refractive index *n*, film thickness *d*) sandwiched between two perfect metals.

1.1 Wave equation for TE-polarization

Derive the wave equation for the mirror waveguide in TE-polarization for the *y*-component (in Cartesian coordinates) of the electric field assuming:

- a harmonic ansatz
- translational invariance along the y-direction
- propagation along the *z*-direction
- *TE-condition:* $E_x = E_z = H_y = 0$

Solution:

Using the assumptions above we can formulate an ansatz for the electric field amplitude

$$\boldsymbol{E}(x, y, z) = E_y(x, z) e^{i\beta z} e^{-i\omega t} \hat{\boldsymbol{e}}_y.$$
(1.1)

Now we can use Maxwells equations

$$\vec{\nabla} \times E = -\frac{\partial}{\partial t} \mu_0 H$$
 and $\vec{\nabla} \times H = \frac{\partial}{\partial t} D = \varepsilon_0 \varepsilon \frac{\partial}{\partial t} E$ (1.2)

to derive the wave equation. Applying the curl to Faradays law gives us

$$\vec{\nabla} \times \left(\vec{\nabla} \times E\right) = \vec{\nabla} \underbrace{(\vec{\nabla} \cdot E)}_{=0} - \Delta E \stackrel{(1.2)}{=} -\mu_0 \frac{\partial}{\partial t} \left(\vec{\nabla} \times H\right)$$
$$= -\underbrace{\mu_0 \varepsilon_0}_{1/c_0^2} \varepsilon \frac{\partial^2}{\partial t^2} E. \tag{1.3}$$

Using the harmonic ansatz of the electric field we can substitute the time derivative with " $-i\omega$ " and find

$$\left(\Delta + \varepsilon \frac{\omega^2}{c_0^2}\right) \boldsymbol{E}(x, y, z) = 0$$

$$\left(\Delta_t - \beta^2 + \varepsilon \frac{\omega^2}{c_0^2}\right) \boldsymbol{E}_y(x, z) = 0.$$
(1.4)

1.2 Wave equation for TM-polarization

Derive a similar wave equation in case of TM-polarization for the *y*-component of the magnetic field using the same assumption and the polarization conditions complementary to the TE-conditions.

Solution:

We now need to consider the magnetic field H. Similar to equation (1.3) we take the curl on Amperes law

$$\vec{\nabla} \times \left(\vec{\nabla} \times H\right) = \vec{\nabla} \underbrace{(\vec{\nabla} \cdot H)}_{=0} - \Delta H \stackrel{(1.2)}{=} \varepsilon_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\vec{\nabla} \times E\right)$$
$$= -\underbrace{\mu_0 \varepsilon_0}_{1/c_0^2} \varepsilon_0 \frac{\partial^2}{\partial t^2} H. \tag{1.5}$$

Analogously to the task before we can than derive the wave equation as

$$\left(\Delta_t - \beta^2 + \varepsilon \frac{\omega^2}{c_0^2}\right) H_y(x, z) = 0.$$
(1.6)

1.3 Dispersion equation for TE-polarization

Use the following ansatz for the modal fields to find the dispersion equation in TE-polarization taking into account the boundary conditions

$$E_y = E_y^0 \cos(k_{\perp} x)$$
 and $E_y \left(x = \pm \frac{d}{2} \right) = 0.$ (1.7)

What happens to the dispersion relation in case of the anti-symmetric mode?

Solution:

Substituting ansatz (1.7) into (1.4) yields

$$\left(\Delta_t - \beta^2 + \varepsilon \frac{\omega^2}{c_0^2}\right) E_y^0 \cos(k_\perp x) = \left(-k_\perp^2 - \beta^2 + \varepsilon \frac{\omega^2}{c_0^2}\right) E_y^0 \cos(k_\perp x) = 0.$$
(1.8)

In order to always fulfill this equation the following must hold:

$$k_{\perp}^{2} + \beta^{2} = \varepsilon \frac{\omega^{2}}{c_{0}^{2}} := k^{2}$$
 with $k = nk_{0}$. (1.9)

Using the boundary condition we have

$$\cos\left(\pm k_{\perp}\frac{d}{2}\right) = 0 \quad \Rightarrow \quad k_{\perp}\frac{d}{2} = \frac{\pi}{2} + n\pi \quad \text{with} \quad n \in \mathbb{N}_{0}$$
$$\Rightarrow \quad k_{\perp} = \frac{2}{d}\pi\left(n + \frac{1}{2}\right) = \frac{\pi}{d}m \quad \text{with} \quad m = 1, 3, 5, \dots$$
(1.10)

Then we can solve (1.9) for β and find

$$\beta = \sqrt{k^2 - k_{\perp}^2} = \sqrt{n^2 k_0^2 - \left(\frac{\pi}{d}m\right)^2} = nk_0 \sqrt{1 - \left(\frac{m\pi}{dnk_0}\right)^2}.$$
(1.11)

If we now introduce an effective index $n_{\text{eff}} = \frac{\beta}{k_0}$ we find the disperion equation of a mirror waveguide

$$n_{\rm eff} = n \sqrt{1 - \left(\frac{m\pi}{d n k_0}\right)^2}$$
 with $m = 1, 3, 5, \dots$ (1.12)

For the anti-symmetric mode *m* will take even values m = 2, 4, 6, ...

1.4 Propagation constant

Plot the propagation constant as function of wavelength for the three lowest order modes $(n = 1.45, d = 2 \mu m, 0.5 < \lambda < 6 \mu m)$. Derive general expressions for the cut-off wavelength (at which $\beta = 0$) and plot the cut-off wavelength for the mode order (combining solution of TE-and TM-polarization) $1 \le m \le 5$ for the above mentioned parameters.

Fig. 1: Propagation constant as a function of wavelength for the three lowest order modes for a glass mirror guide.

The cut-off wavelength can be determined by setting (1.11) to zero:

$$0 = \sqrt{1 - \left(\frac{m\pi}{dnk_0}\right)^2} \quad \Rightarrow \quad 1 = \frac{m\lambda}{2dn} \quad \Rightarrow \quad \lambda_c = \frac{2dn}{m}.$$
 (1.13)

Fig. 2: Cut-off wavelength λ_c as a function of the mode order.

1.5 Group velocity dispersion

Derive analytic equations for the group velocity dispersion and show that causality holds. Plot the relative group velocity (v_g/c_0) as a function of wavelength for the configuration defined in Exercise 1.4. What happens close to the cut-off.

Solution:

The group velocity is given as

$$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}\beta} \quad \Rightarrow \quad \frac{1}{v_g} = \frac{\mathrm{d}\beta}{\mathrm{d}\omega} = \frac{\mathrm{d}}{\mathrm{d}\omega} \left(\frac{n}{c}\omega\sqrt{1 - \left(\frac{m\pi c}{dn\omega}\right)^2}\right).$$
 (1.14)

For a shorter notation we summarize the constants $\frac{m\pi c}{dn}$ into a new constant α . Then we can formally calculate the derivative¹

$$\frac{\mathrm{d}\beta}{\mathrm{d}\omega} = \frac{n}{c} \left(\sqrt{1 - \frac{\alpha^2}{\omega^2}} + \omega \frac{\frac{\alpha^2}{\omega^3}}{\sqrt{1 - \frac{\alpha^2}{\omega^2}}} \right) = \frac{n}{c} \frac{1}{\sqrt{1 - \frac{\alpha^2}{\omega^2}}} \left(1 - \frac{\alpha^2}{\omega^2} + \frac{\alpha^2}{\omega^2} \right) = \frac{n}{c} \frac{1}{\sqrt{1 - \frac{\alpha^2}{\omega^2}}}.$$
 (1.15)

Thus the group velocity dispersion is

$$\nu_g = \frac{\mathrm{d}\omega}{\mathrm{d}\beta} = \left(\frac{n}{c}\frac{1}{\sqrt{1-\frac{\alpha^2}{\omega^2}}}\right)^{-1} = \frac{c}{n}\sqrt{1-\left(\frac{m\pi}{dnk_0}\right)^2}.$$
(1.16)

Fig. 3: Relative group velocity as a function of wavelength for the previously defined configuration. Close to the cut-off the relative velocity drops down to zero very quickly.

¹It is much easier to put ω into the square root, then we don 't have to apply the product rule.

2 The symmetric planar slab waveguide

Given is a symmetric dielectric slab waveguide in TE polarization (see sketch below). The propagation direction is along the *z*-axis and the waveguide is invariant along the *y*-direction. The modes in this structure are given by:

Fig. 4: Geometry of the planar slab waveguide

$$E_{y} = \begin{cases} A e^{-\gamma_{1}(x-\varrho)} & x \ge \varrho \\ B \sin(\kappa x) + C \cos(\kappa x) & 0 \le x < \varrho \\ D e^{\gamma_{3} x} & x < 0 \end{cases}$$
(2.1)

2.1 Derivation of γ_1, γ_3 and κ

Use the wave equation to derive expressions for γ_1 , γ_3 and κ .

Solution:

We can formulate the wave equations as follows:

$$\left(\frac{\partial^2}{\partial x^2} + n_{\rm co}^2 k_0^2 - \beta^2\right) E(x) = 0$$
(2.2)

$$\left(\frac{\partial^2}{\partial x^2} + n_{\rm cl}^2 k_0^2 - \beta^2\right) E(x) = 0.$$
(2.3)

Using the ansatz for the fields (2.1) we can find

$$\kappa^2 = n_{\rm co}^2 k_0^2 - \beta^2 \quad \text{and} \quad \gamma_3^2 = \gamma_1^2 = \beta^2 - n_{\rm cl}^2 k_0^2.$$
(2.4)

2.2 Boundary conditions

Write down the boundary conditions for this waveguide configuration.

Solution:

The boundary conditions are obtained by demanding continuity of the transverse electric fields and their derivatives at the two interfaces. At x = 0 we find

$$De^{\gamma_3 0} = B\sin(\kappa 0) + C\cos(\kappa 0) \implies D = C$$
 (2.5)

$$D\gamma_3 e^{\gamma_3 0} = B\kappa \cos(\kappa 0) - C\kappa \sin(\kappa 0) \implies D\gamma_3 = B\kappa.$$
 (2.6)

For the boundary at $x = \rho$ we find

$$A = B\sin(\kappa \rho) + C\cos(\kappa \rho) \tag{2.7}$$

$$-A\gamma_1 = B\kappa \cos(\kappa \rho) - C\kappa \sin(\kappa \rho). \tag{2.8}$$

2.3 Dispersion relation

Derive the dispersion relation of the modes of this slab waveguide configuration. The final expression should have the form

$$\frac{2\kappa\gamma}{\kappa^2 - \gamma^2} = \tan(\kappa\rho) \quad \text{with} \quad \gamma = \gamma_1 = \gamma_3. \tag{2.9}$$

Solution:

We start by equating equations (2.7), (2.8) and using $C\gamma_3 = B\kappa$

$$B\sin(\kappa\varrho) + C\cos(\kappa\varrho) = \frac{C\kappa}{\gamma_1}\sin(\kappa\varrho) - \frac{B\kappa}{\gamma_1}\cos(\kappa\varrho)$$

$$\Rightarrow B\sin(\kappa\varrho) + \frac{\kappa}{\gamma_3}B\cos(\kappa\varrho) = \frac{B\kappa^2}{\gamma_1\gamma_3}\sin(\kappa\varrho) - \frac{B\kappa}{\gamma_1}\cos(\kappa\varrho)$$

$$\Rightarrow \left(1 - \frac{\kappa^2}{\gamma_1\gamma_3}\right)\sin(\kappa\varrho) = -\kappa\left(\frac{1}{\gamma_1} + \frac{1}{\gamma_3}\right)\cos(\kappa\varrho)$$

$$\Rightarrow \frac{\gamma_1\gamma_3 - \kappa^2}{\gamma_1\gamma_3}\sin(\kappa\varrho) = -\kappa\left(\frac{\gamma_1 + \gamma_3}{\gamma_1\gamma_3}\right)\cos(\kappa\varrho)$$

$$\Rightarrow \tan(\kappa\varrho) = \kappa\frac{\gamma_1 + \gamma_3}{\kappa^2 - \gamma_1\gamma_3} = \frac{2\kappa\gamma}{\kappa^2 - \gamma^2}.$$
(2.10)

2.4 Effective indices

Plot the right- and left-handed side of the dispersion equation as a function of n_{eff} for $\rho = 5 \,\mu m$, $\lambda_0 = 1 \,\mu m$, $n_{co} = 1.5$, $n_{cl} = 1.45$ within the range $n_{cl} < n_{eff} < n_{co}$. Remember that $n_{eff} = \frac{\beta}{k_0}$. Find or read off the effective indices of the fundamental mode and the two next higher-order modes.

We can modify the relations (2.4) as a function of the effective index

$$\kappa^2 = k_0^2 (n_{\rm co}^2 - n_{\rm eff}^2)$$
 and $\gamma^2 = k_0^2 (n_{\rm eff} - n_{\rm cl}^2).$ (2.11)

Substituting this into (2.10) results in

$$\tan\left(k_{0}\rho\sqrt{n_{\rm co}^{2}-n_{\rm eff}^{2}}\right) = \frac{2\sqrt{(n_{\rm co}^{2}-n_{\rm eff}^{2})(n_{\rm eff}^{2}-n_{\rm cl}^{2})}}{(n_{\rm co}^{2}-n_{\rm eff}^{2}) - (n_{\rm eff}^{2}-n_{\rm cl}^{2})} = \frac{2\sqrt{(n_{\rm co}^{2}-n_{\rm eff}^{2})(n_{\rm eff}^{2}-n_{\rm cl}^{2})}}{n_{\rm co}^{2}-2n_{\rm eff}^{2}+n_{\rm cl}^{2}}.$$
 (2.12)

We can now find the solutions in a graphical way as displayed in figure 5.

Fig. 5: Plot of the left hand side and right hand side of (2.12). The three solutions we can obtain are $n_1 = 2.139$ (fundamental mode), $n_3 = 2.220$ (first higher mode), $n_4 = 2.242$ (second higher mode).

2.5 Poynting vector

Calculate the transverse Poynting vector distribution of the three modes discussed in the previous task. Use $S_z = \frac{1}{2} \operatorname{Re}(\mathbf{E} \times \mathbf{H}^*)$.

Solution:

We can rewrite the Poynting vector using $|\mathbf{H}| = \frac{n_{\text{eff}}}{c_0 \mu_0} |\mathbf{E}|$

$$S_{z} = \frac{1}{2} \operatorname{Re}(\boldsymbol{E} \times \boldsymbol{H}^{*}) = \frac{n_{\text{eff}}}{c_{0}\mu_{0}} |\boldsymbol{E}|^{2} = \frac{\varepsilon_{0} n_{\text{eff}}}{2} |\boldsymbol{E}|^{2}.$$
 (2.13)

3 Optical fiber

3.1 Transverse EM-components

Show that all transverse EM-components depend on the longitudinal components E_z and H_z . Use Maxwells equations

$$\vec{\nabla} \times H = -i\omega\varepsilon\varepsilon_0 E \quad and \quad \vec{\nabla} \times E = i\omega\mu_0 H$$
 (3.1)

in cylindrical coordinates.

Solution:

We start by explicitly writing down the curl operator in cylindrical coordinates

$$\left[\frac{1}{r}\frac{\partial H_z}{\partial \varphi} - \frac{\partial H_{\varphi}}{\partial z}\right]\hat{\mathbf{e}}_r + \left[\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r}\right]\hat{\mathbf{e}}_{\varphi} + \frac{1}{r}\left[\frac{\partial}{\partial r}(rH_{\varphi}) - \frac{\partial H_r}{\partial \varphi}\right]\hat{\mathbf{e}}_z = -\mathrm{i}\omega\varepsilon\varepsilon_0 E \qquad (3.2)$$

$$\left[\frac{1}{r}\frac{\partial E_z}{\partial \varphi} - \frac{\partial E_\varphi}{\partial z}\right]\hat{\mathbf{e}}_r + \left[\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r}\right]\hat{\mathbf{e}}_\varphi + \frac{1}{r}\left[\frac{\partial}{\partial r}(rE_\varphi) - \frac{\partial E_r}{\partial \varphi}\right]\hat{\mathbf{e}}_z = \mathrm{i}\omega\mu_0\boldsymbol{H}.$$
(3.3)

Furthermore we want to assume fields of the form $E(x, y, z) = u(x, y)e^{i\beta z}$ with a phase factor $\beta = n_{\text{eff}}k_0$. From that we can read of the transverse components of electric and magnetic field:

$$E_r = \frac{\mathrm{i}}{\omega\varepsilon\varepsilon_0} \left[\frac{1}{r} \frac{\partial H_z}{\partial \varphi} - \mathrm{i}\beta H_\varphi \right] \qquad \qquad E_\varphi = \frac{\mathrm{i}}{\omega\varepsilon\varepsilon_0} \left[\mathrm{i}\beta H_r - \frac{\partial H_z}{\partial r} \right] \tag{3.4}$$

$$H_r = \frac{1}{i\omega\mu_0} \left[\frac{1}{r} \frac{\partial E_z}{\partial \varphi} - i\beta E_{\varphi} \right] \qquad \qquad H_{\varphi} = \frac{1}{i\omega\mu_0} \left[i\beta E_r - \frac{\partial E_z}{\partial r} \right]. \tag{3.5}$$

For the radial component of the electric field (3.4) we substitute the φ component of the magnetic field (3.5) and find with $k_0 = \omega/c_0$

$$E_{r} = \frac{i}{\omega\varepsilon\varepsilon_{0}} \left[\frac{1}{r} \frac{\partial H_{z}}{\partial \varphi} - \frac{\beta}{\omega\mu_{0}} \left[i\beta E_{r} - \frac{\partial E_{z}}{\partial r} \right] \right]$$

$$\underbrace{\left(1 - \frac{\beta^{2}}{\omega^{2}\varepsilon\varepsilon_{0}\mu_{0}} \right)}_{1 - \frac{n_{\text{eff}}^{2}}{\varepsilon}} E_{r} = \frac{i}{\omega\varepsilon\varepsilon_{0}} \left[\frac{1}{r} \frac{\partial H_{z}}{\partial \varphi} + \frac{\beta}{\omega\mu_{0}} \frac{\partial E_{z}}{\partial r} \right] \quad \text{with} \quad c_{0}^{2} = \frac{1}{\mu_{0}\varepsilon_{0}}$$

$$E_{r} = \frac{ic_{0}}{\omega\varepsilon} \frac{1}{1 - \frac{n_{\text{eff}}^{2}}{\varepsilon}} \left[\frac{1}{\varepsilon_{0}c_{0}r} \frac{\partial H_{z}}{\partial \varphi} + \frac{\beta}{\omega c_{0}\mu_{0}\varepsilon_{0}} \frac{\partial E_{z}}{\partial r} \right]$$

$$E_{r} = \frac{i}{k_{0}(\varepsilon - n_{\text{eff}}^{2})} \left[\frac{1}{\varepsilon_{0}c_{0}r} \frac{\partial H_{z}}{\partial \varphi} + n_{\text{eff}} \frac{\partial E_{z}}{\partial r} \right]. \quad (3.6)$$

We can also find the φ componeten of the magnetic field by substituting E_r instead

$$H_{\varphi} = \frac{1}{i\omega\mu_{0}} \left[-\frac{\beta}{\omega\varepsilon\varepsilon_{0}} \left[\frac{1}{r} \frac{\partial H_{z}}{\partial\varphi} - i\beta H_{\varphi} \right] - \frac{\partial E_{z}}{\partial r} \right]$$

$$\left(1 - \frac{\beta^{2}}{\omega^{2}\mu_{0}\varepsilon_{0}\varepsilon} \right) H_{\varphi} = \frac{1}{i\omega\mu_{0}} \left[-\frac{\beta}{\omega\varepsilon\varepsilon_{0}} \frac{1}{r} \frac{\partial H_{z}}{\partial\varphi} - \frac{\partial E_{z}}{\partial r} \right]$$

$$\left(1 - \frac{n_{\text{eff}}^{2}}{\varepsilon} \right) H_{\varphi} = \frac{ic_{0}}{\omega\varepsilon} \left[-\frac{\beta}{\omega c_{0}\mu_{0}\varepsilon_{0}} \frac{1}{r} \frac{\partial H_{z}}{\partial\varphi} - \frac{\varepsilon}{c_{0}\mu_{0}} \frac{\partial E_{z}}{\partial r} \right]$$

$$H_{\varphi} = \frac{-i}{k_{0}(\varepsilon - n_{\text{eff}}^{2})} \left[\frac{n_{\text{eff}}}{r} \frac{\partial H_{z}}{\partial\varphi} + \varepsilon\varepsilon_{0}c_{0} \frac{\partial E_{z}}{\partial r} \right]. \tag{3.7}$$

The other two components can be derived analogously and are:

$$E_{\varphi} = -K \left(-\frac{n_{\text{eff}}}{r} \frac{\partial E_z}{\partial \varphi} + \frac{1}{\varepsilon_0 c_0} \frac{\partial H_z}{\partial r} \right)$$

$$H_r = K \left(n_{\text{eff}} \frac{\partial H_z}{\partial r} - \frac{\varepsilon \varepsilon_0 c_0}{r} \frac{\partial E_z}{\partial \varphi} \right) \quad \text{with} \quad K = \frac{i}{k_0 (\varepsilon - n_{\text{eff}}^2)}.$$
(3.8)

3.2 Application of boundary conditions

Use boundary condition BC3 ($A = A_E$) and BC4 ($A = A_H$) to find expressions for A. Use the relation

$$J'_{m}(x) = \frac{m}{x} J_{m}(x) - J_{m+1}(x) \quad and \quad K'_{m}(x) = \frac{m}{x} K_{m}(x) - K_{m+1}(x).$$
(3.9)

Solution:

We start by writing down the two boundary conditions

BC3:
$$E_{\varphi}^{co} = E_{\varphi}^{cl}$$
 BC4: $H_{\varphi}^{co} = H_{\varphi}^{cl}$ (3.10)

Furthermore we want to list again the ansatz functions for the *z*-component of the fields: Now we take the expressions from Task 1 and insert the ansatz vor the fields E_z and H_z . We

Table 1: Ansatz functions for the longitudinal fields. Note that B = 1 since only the ratio between *A* and *B* is relevant.

	E_z	H_{z}
core	$A\frac{J_m(UR)}{J_m(U)}\cos(m\varphi)$	$B\frac{J_m(UR)}{J_m(U)}\sin(m\varphi)$
cladding	$A\frac{K_m(W\hat{R})}{K_m(W)}\cos(m\varphi)$	$B\frac{K_m(WR)}{K_m(W)}\sin(m\varphi)$

start with BC3 $(r=\varrho,R=1)$

$$E_{\varphi}^{co} = -K_{co} \left(-\frac{n_{eff}}{r} \frac{\partial E_z}{\partial \varphi} + \frac{1}{\varepsilon_0 c_0} \frac{\partial H_z}{\partial r} \right)$$

$$= -K_{co} \left(-\frac{n_{eff}}{r} \frac{\partial}{\partial \varphi} \left[A_E \cos(m\varphi) \right] + \frac{1}{\varepsilon_0 c_0} \frac{\partial}{\partial r} \left[\frac{J_m(U)}{J_m(U)} \sin(m\varphi) \right] \right)$$

$$= -K_{co} \left(\frac{n_{eff}}{r} m A_E \sin(m\varphi) + \frac{1}{\varepsilon_0 c_0 \varrho} \sin(m\varphi) \left[m - \frac{J_{m+1}(U)}{J_m(U)} U \right] \right)$$

$$E_{\varphi}^{cl} \stackrel{!}{=} -K_{cl} \left(\frac{n_{eff}}{r} m A_E \sin(m\varphi) + \frac{1}{\varepsilon_0 c_0 \varrho} \sin(m\varphi) \left[m - \frac{K_{m+1}(W)}{K_m(W)} W \right] \right).$$
(3.11)

We can solve this equation for A_E

$$A_{E} = \frac{\frac{\sin(m\varphi)}{\varepsilon_{0}c_{0}\varrho} \left(-\frac{K_{m+1}(W)}{K_{m}(W)}W + \frac{J_{m+1}(U)}{J_{m}(U)}U\right)}{\frac{n_{\text{eff}}}{\varrho}m\sin(m\varphi)(K_{\text{cl}} - K_{\text{co}})}$$
$$= \frac{1}{\varepsilon_{0}c_{0}n_{\text{eff}}m(K_{\text{cl}} - K_{\text{co}})} \left(K_{\text{cl}}\frac{K_{m+1}(W)}{K_{m}(W)}W - K_{\text{co}}\frac{J_{m+1}(U)}{J_{m}(U)}U\right).$$
(3.12)

We repeat all steps with BC4 ($r = \rho, R = 1$)

$$H_{\varphi}^{co} = K_{co} \left(\frac{n_{eff}}{\varrho} m \cos(\varphi) + \varepsilon_0 c_0 \varepsilon_{co} \frac{A_H}{\varrho} \cos(m\varphi) \left[m - \frac{J_{m+1}(U)}{J_m(U)} U \right] \right)$$
$$H_{\varphi}^{cl} \stackrel{!}{=} K_{cl} \left(\frac{n_{eff}}{\varrho} m \cos(\varphi) + \varepsilon_0 c_0 \varepsilon_{cl} \frac{A_H}{\varrho} \cos(m\varphi) \left[m - \frac{K_{m+1}(W)}{K_m(W)} W \right] \right).$$
(3.13)

Again, solving for A_H yields

$$A_{H} = \frac{(K_{\rm cl} - K_{\rm co})n_{\rm eff}m}{\varepsilon_{0}c_{0} \left[m(\varepsilon_{\rm co} - \varepsilon_{\rm cl}) + K_{\rm cl}\varepsilon_{\rm cl} \frac{K_{m+1}(W)}{K_{m}(W)}W - K_{\rm co}\varepsilon_{\rm co} \frac{J_{m+1}(U)}{J_{m}(U)}U \right]}.$$
(3.14)

3.3 Dispersion relation

Determine the dispersion relation of the optical fiber by setting $A_E = A_H$.

Solution:

We first start by rewriting K_{co} and K_{cl} in terms of U and W

$$U^{2} = \rho^{2} (k_{0}^{2} \varepsilon_{co} - \beta^{2}) \quad \Rightarrow \quad K_{co} = \frac{k_{0} \rho^{2} i}{U^{2}}$$
$$W^{2} = \rho^{2} (k_{0}^{2} \varepsilon_{cl} - \beta^{2}) \quad \Rightarrow \quad K_{cl} = -\frac{k_{0} \rho^{2} i}{W^{2}}.$$
(3.15)

Then we equate (3.12) and (3.14)

$$(K_{\rm cl} - K_{\rm co})^{2} (n_{\rm eff}m)^{2} = \left[K_{\rm cl}\frac{K_{m+1}(W)}{K_{m}(W)}W - K_{\rm co}\frac{J_{m+1}(U)}{J_{m}(U)}U\right] \\ \left[m(\varepsilon_{\rm co} - \varepsilon_{\rm cl}) + K_{\rm cl}\varepsilon_{\rm cl}\frac{K_{m+1}(W)}{K_{m}(W)}W - K_{\rm co}\varepsilon_{\rm co}\frac{J_{m+1}(U)}{J_{m}(U)}U\right] \\ \left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right)^{2} (n_{\rm eff}m)^{2} = \left[-\frac{K_{m+1}(W)}{WK_{m}(W)} - \frac{J_{m+1}(U)}{UJ_{m}(U)}\right] \\ \left[m(\varepsilon_{\rm co} - \varepsilon_{\rm cl}) - \varepsilon_{\rm cl}\frac{K_{m+1}(W)}{WK_{m}(W)} - \varepsilon_{\rm co}\frac{J_{m+1}(U)}{UJ_{m}(U)}\right] \\ \left(\frac{V}{UW}\right)^{4} \left(\frac{n_{\rm eff}m}{n_{\rm co}}\right)^{2} = \left[\frac{K_{m+1}(W)}{WK_{m}(W)} + \frac{J_{m+1}(U)}{UJ_{m}(U)}\right] \\ \left[m(\varepsilon_{\rm cl} - \varepsilon_{\rm co}) - \left(\frac{n_{\rm cl}}{n_{\rm co}}\right)^{2}\frac{K_{m+1}(W)}{WK_{m}(W)} + \frac{J_{m+1}(U)}{UJ_{m}(U)}\right].$$
(3.16)

4 Weakly guiding fibers

4.1 Cut-off condition

Show that in weakly guidance approximation, the cut-off condition for the first higher-order mode is given by $0 = J_0(V)$.

Solution:

We can use the dispersion equation of weakly guided fiber modes

$$\frac{UJ_{l-1}(U)}{J_l(U)} = -\frac{WK_{l-1}(W)}{K_l(W)},\tag{4.1}$$

where we consider the first order solution (l = 1). At the cut-off the modes get completely localized. This happens when $W^2 \propto \beta^2 - k_0^2 n_{cl}^2 = 0$ and thus U = V. Then we find

$$\frac{UJ_0(U)}{J_1(U)} = 0 \quad \Rightarrow \quad J_0(V) = 0 \quad \text{for} \quad V \neq 0.$$
(4.2)

4.2 Cut-off numbers

Show that the cut-off numbers are given by $X_{lm} = (l+2m)\frac{\pi}{2}$, using the approximation

$$J_{l}(X) = \sqrt{\frac{2}{\pi X}} \cos\left(X - \left(l + \frac{1}{2}\right)\frac{\pi}{2}\right),$$
(4.3)

which holds for large values of *X* (multi-mode fiber).

Solution:

From the first task the cut-off condition is given by $J_l(X) = 0$. Thus we set (4.3) to zero and find

$$0 = \cos\left(X - \left(l + \frac{1}{2}\right)\frac{\pi}{2}\right)$$

$$\Rightarrow m\pi + \frac{\pi}{2} = X - \left(l + \frac{1}{2}\right)\frac{\pi}{2}$$

$$\Rightarrow X = \frac{\pi}{2}\left(2m + l + \frac{3}{2}\right).$$
(4.4)

For large values of X the term 3/2 can be neglected compared to the other terms. This leads to

$$X = \frac{\pi}{2}(2m+l).$$
 (4.5)

4.3 Effective index

Show that the propagation constant is analytic, using the definition of U and the assumption that $U = X_{lm}$ (vertical lines in dispersion function diagram).

Plot n_{eff} first as a function of m for $l = 0 (1 \le m \le 5)$ and second as function of l for $m = 1 (0 \le l \le 4)$ using $n_1 = 1.5$, $\rho = 50 \,\mu\text{m}$, $\lambda = 1 \,\mu\text{m}$. What can you say about the phase velocity?

Solution:

We use the definition of *U* and try to solve for β

$$\frac{\pi}{2}(2m+l) = \rho \sqrt{k_0^2 n_{\rm co}^2 - \beta^2}$$

$$\beta^2 = k_0^2 n_{\rm co}^2 - \frac{\pi^2}{4\rho^2} (2m+l)^2.$$
(4.6)

Now using $\beta = n_{\text{eff}} k_0$ we can conclude

$$n_{\rm eff} = \sqrt{n_{\rm co}^2 - \left(\frac{\pi}{2\rho k_0}\right)^2 (2m+l)^2}.$$
(4.7)

Fig. 6: Effective index of the weakly guided fiber for constant l = 0 (left) as a function of *m* and for constant m = 1 as a function of *l*.

By looking at figure 6 we conclude that the effective index decreases for higher order modes. Since the phase velocity $v_p = c/n_{\text{eff}}$ is inversely proportional to the effective index, it will increase for higher modes.

4.4 Group velocity

Derive an analytic expression for the group velocity, assuming that n_1 is wavelength independent.

Solution:

The group velocity is given as $v_g = d\omega/d\beta$. We start with (4.6) and take the total derivative

$$\beta^{2} = \frac{n_{co}^{2}}{c^{2}}\omega^{2} - \frac{\pi^{2}}{4\varrho^{2}}(2m+l)^{2}$$

$$2\beta d\beta = \frac{n_{co}^{2}}{c^{2}}2\omega d\omega$$

$$\Rightarrow \nu_{g} = \frac{d\omega}{d\beta} = \frac{c}{n_{co}^{2}}\frac{\beta}{k_{0}} = \frac{c}{n_{co}^{2}}\sqrt{n_{co}^{2} - \left(\frac{\pi}{2\varrho k_{0}}\right)^{2}(2m+l)^{2}}.$$
(4.8)

Since the group velocity is proportional to the effective index, it will decrease for higher order modes.

5 Pulse propagation

5.1 Pulse envelope without dispersion

Derive the pulse envelope for the case of vanishing group velocity dispersion (GVD) in the situation of a Gaussian pulse at input given by

$$F(t') = e^{-\left(\frac{t}{\tau_p}\right)^2} e^{-i\omega_0 t}.$$
(5.1)

Solution:

We start with the Fourier analysis as done in the lecture

$$F(z,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{F}(z,\omega) e^{-i\omega t} d\omega, \qquad (5.2)$$

where $\tilde{F}(z, \omega)$ is the Fourier component of F(z, t) at the frequency ω . In the frequency domain we know the spatial evolution of $\tilde{F}(z, \omega)$ namely

$$\tilde{F}(z,\omega) = \tilde{F}(0,\omega) e^{i\beta(\omega)z} \quad \text{with} \quad \tilde{F}(0,\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(0,t) e^{i\omega t} dt.$$
(5.3)

So then by substituting (5.3) into (5.2) we find

$$F(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(0,\omega) e^{i(\beta(\omega)z - i\omega t)} d\omega.$$
 (5.4)

We start the calculations by first computing the Fourier transform of the input pulse using the Gaussian integral given as

$$\int_{-\infty}^{\infty} \mathrm{d}x \,\mathrm{e}^{-ax^2+bx} = \sqrt{\frac{\pi}{a}} \mathrm{e}^{\frac{b^2}{4a}}.$$
(5.5)

Then we find by using $\beta(\omega) = \beta_0 + \beta'(\omega - \omega_0)$

$$\tilde{F}(0,\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{t}{\tau_p}\right)^2} e^{i(\omega-\omega_0)t} dt = \tau_p \sqrt{\pi} e^{-\frac{\tau_p^2}{4}(\omega-\omega_0)^2},$$
$$\Rightarrow F(z,t) = \frac{\tau_p \sqrt{\pi}}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-\frac{\tau_p^2}{4}(\omega-\omega_0)^2} e^{i[(\beta_0+\beta'(\omega-\omega_0))z-\omega t]},$$
(5.6)

Now we perform a variable substitution $\bar{\omega} = \omega - \omega_0$ and find

$$F(z,t) = \frac{\tau_p \sqrt{\pi}}{2\pi} e^{\beta_0 z - i\omega_0 t} \int_{-\infty}^{\infty} d\bar{\omega} e^{-\frac{\tau_p^2}{4}\bar{\omega}^2} e^{i[\beta' z - t]\bar{\omega}}$$
(5.7)

$$= \exp\left(-\frac{(\beta'z-t)^2}{\tau_p^2}\right) e^{\beta_0 z - i\omega_0 t}.$$
(5.8)

5.2 Pulse envelope with dispersion

Derive the same envelope but now assume $GVD \neq 0$.

Solution:

Now with group delay dispersion $\beta_2 \neq 0$ we write $\beta(\omega) = \beta_0 + \beta'(\omega - \omega_0) + \frac{1}{2}\beta''(\omega - \omega_0)^2$ and equation (5.7) modifies to

$$F(z,t) = \frac{\tau_p \sqrt{\pi}}{2\pi} e^{i(\beta_0 z - \omega_0 t)} \int_{-\infty}^{\infty} d\bar{\omega} e^{-\frac{\tau_p^2}{4}\bar{\omega}^2} e^{i\left[\frac{1}{2}\beta'' z\bar{\omega}^2 + (\beta' z - t)\bar{\omega}\right]},$$
(5.9)

This is formally solved by setting $a = \frac{\tau_p^2}{4} - \frac{i}{2}\beta''z$ and $b = i(\beta'z - t)$ in equation (5.5)

$$F(z,t) = \frac{\tau_p}{2} \frac{1}{\sqrt{\frac{\tau_p^2}{4} - \frac{i}{2}\beta''z}} \exp\left(-\frac{(\beta'z - t)^2}{\tau_p^2 + 2i\beta''z}\right) e^{i(\beta_0 z - \omega_0 t)}$$
(5.10)

5.3 Pulse width

Derive the position dependend pulse width and show that by using a pulse width level of $B = e^{-1/4}$, the following equation results:

$$\tau(z) = \tau_p \sqrt{1 + \left(\frac{2z\beta_2}{\tau_p^2}\right)^2}.$$
(5.11)

Solution:

In order to find the pulse width we need to split the exponential in equation (5.10) into amplitude and phase

$$F(z,t) = \underbrace{\frac{1}{\sqrt{1 - i\frac{2\beta_2 z}{\tau_p^2}}}}_{\text{amplitude change}} \underbrace{\exp\left(-\frac{(t - z\beta_1)^2 \tau_p^2}{4z^2 \beta_2^2 + \tau_p^4}\right)}_{\text{width change}} \underbrace{\exp\left(i\frac{2z\beta_2(t - z\beta_1)}{4z^2 \beta_2^2 + \tau_p^4}\right)}_{\text{local phase influence}} \underbrace{\exp\left(i\frac{\beta(\omega_0)z - \omega_0 t}{z^2 \beta_2^2 + \tau_p^4}\right)}_{\text{carrier phase}}.$$
 (5.12)

We only need to consider the change of width described by the real part of the exponential term. For a pulse width level $B = e^{-1/4}$ we demand

$$\frac{\tau_p^2}{4z^2\beta_2^2 + \tau_p^4} \stackrel{!}{=} \frac{1}{\tau(z)^2}.$$
(5.13)

Now we simply solve for $\tau(z)$

$$\tau(z) = \sqrt{\frac{4z^2\beta_2^2 + \tau_p^4}{\tau_p^2}} = \tau_p \sqrt{1 + \left(\frac{2z\beta_2}{\tau_p^2}\right)^2}.$$
(5.14)

5.4 Cross over position for different initial pulse lengths

Determine the cross-over position at which a pulse of initial width τ_p^a has a larger temporal pulse width than a pulse with ($\tau_p^b < \tau_p^a$). Assume the same GVD.

Solution:

Using (5.14) we can equate the two equations for different initial pulse lengths and solve for \boldsymbol{z}

$$\begin{aligned} \tau_{p}^{a} \sqrt{1 + \left(\frac{2z\beta_{2}}{\tau_{p}^{a}}\right)^{2}} &= \tau_{p}^{b} \sqrt{1 + \left(\frac{2z\beta_{2}}{\tau_{p}^{b}}\right)^{2}} \\ \Rightarrow (\tau_{p}^{a})^{2} - (\tau_{p}^{b})^{2} &= (2z\beta_{2})^{2} \left(\frac{1}{(\tau_{p}^{b})^{2}} - \frac{1}{(\tau_{p}^{a})^{2}}\right) \\ \Rightarrow z^{2} &= \frac{1}{4\beta_{2}^{2}} \frac{(\tau_{p}^{a})^{2} - (\tau_{p}^{b})^{2}}{\frac{1}{(\tau_{p}^{b})^{2}} - \frac{1}{(\tau_{p}^{a})^{2}}} \\ \Rightarrow z &= \frac{\tau_{p}^{a} \tau_{p}^{b}}{2\beta_{2}}. \end{aligned}$$
(5.15)