Oberflächenphysik

1 Herstellung von OF

Probepräparation vor dem UHV:

- 1. Züchtung eines Einkristalls: Erstarren einer Schmelze (Si, GaAs, Metalle) Kondensation aus Gasphase: CdS, SiC Ausscheiden aus übersättigter Lösung: NaCl, GaAs, SiO2
- 2. Ausrichtung des Kristalls: Laue Rückstreuung, besser: Bragg-Reflexion mit Goniometer
- Schneiden: 3. Hart: Diamantbesetzte Trennscheibe, Weich: Funkenerosion
- Schleifen: mehrfach mit Diamantpaste, anschließend Elektropolitur (weiche Kristalle)

Probepräparation im UHV:

- 1. Spalten: mechanisches Schlagen (Si, GaAs, ZnO)
- 2. Chemische Reaktion: Absättigung von dangling bonds durch Adatome wie H,O
- 3. Sputtern (Ionenbeschuss) bei Metallen: Ar⁺, ca. 500 eV-3000 eV, amorphe OF,
- 4. Heizen (Tempern, Annealen, Flashen): Direktstromheizen oder Strahlungsheizen, Ausheilen von Defekten (Annealen), Änderung der OF-Stöchiometrie (Tempern).

2 Geometrische Struktur von OF

Relaxation: Änderung vertikaler Lagenabstände

Rekonstruktion: Änderung der lateralen Translationssymmetrie (displaziv, bindungsbrechend, bindungsformend)

Defekte: Dichte: $n \sim \exp(-E_{\text{Def}}/k_B T)$

Punktdefekte: Adatome, Vacancy, Kink, Ad-dimer, Dotierung Ausgedehnte Defekte: Stufenkanten, Korngrenzen, Schraubenversetzungen, Inseln

Adsorbat-Überstrukturen:

Notation nach Wood: $S(hkl) - (p \times q)R\alpha - A$ Längenverhältnisse $p = |a_1|/|s_1|, q = |a_2|/|s_2|$, Winkel α

kommensurabel: 3 gemeinsame Überstruktur für Adsorbat und Substrat

Epitaxiematrix: $\begin{pmatrix} \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} \boldsymbol{s}_1 \\ \boldsymbol{s}_2 \end{pmatrix}$

3 Prozesse an Oberflächen

$\begin{array}{l} \textbf{Adsorption:} \ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{p_A}{n \cdot \sqrt{2\pi m k_B T}} \mathrm{S}(\theta) \exp \biggl(-\frac{E_A}{k_B T_G} \biggr), \\ \theta \ \text{-relative Bedeckung, } \mathrm{S}(\theta) \ \text{-sticking coefficient} \end{array}$

n - Flächendichte der Adsorptionsplätze

- p_A Partialdruck, T Gastemperatur
- E_A Aktivierungsbarriere
- **a)** Adsorption eines Atoms: ohne Barriere ($E_A \approx 0$) in niedrigsten Energiezustand, dissipative Prozesse notwendig sonst Reflexion von OF
- **b**) Adsorption eines Moleküls (O_2 , H_2): Ausbildung einer Barriere E_A zwischen physiosorbierten und chemisorbierten Zustand
- c) Physiosorbierter Zustand: Van der Waals Wechselwirkungen
- d) Chemisorbierter Zustand: chemische Wechselwirkung mit Elektronenzuständen, Verbreiterung von Energieniveaus in OF-Nähe, teilweise Entleerung bis zur Fermienergie

Desorption: $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -v_{\mathrm{Des}} \cdot \theta^{q} \exp\left(-\frac{E_{\mathrm{Des}}}{k_{B}T}\right),$

 $v_{\rm Des}$ - Attempt frequency des Adsorbatteilches ~ 10^{13} Hz T - Temperatur, $E_{\text{Des}} = E_A + E_B$ - Desorptionsenergie θ^q - q-Absorbate desorbieren gemeinsam als Molekül

Diffusion: Barriere $E_D \approx 40 \text{ meV}$

Ostwald Theorie: größere Inseln wachsen, kleinere schrumpfen: $A_{\text{Insel}}(t) \sim (t_0 - t)^{\check{\alpha}}$ (Oberflächenminimierung, Volumenmaximierung) attachment-limited decay ($\kappa_{\text{Diff}} \gg \kappa_{\text{AD}}$) liefert $\alpha = 1$ diffusion-limited decay ($\kappa_{\text{Diff}} \ll \kappa_{\text{AD}}$) liefert $\alpha = 2/3$

Ion Scattering Spectroscopy (ISS): Energien > 100 eV

 $\left(\frac{\cos \vartheta_1 + \sqrt{(M_2/M_1)^2 - \sin^2 \vartheta_1}}{1 + M_2/M_1}\right)^2 \vartheta \underset{\longrightarrow}{\stackrel{=\pi/2}{\Longrightarrow}} \frac{M_2 - M_1}{M_2 + M_1}$ $\frac{E_1}{-} = 0$ $\overline{E_0}$

Zweierstoßmodell, notwendige: Ionenquelle, Energieanalysator für Ionen, leichte Ionen (He⁺) mit kleinen Energien $E_0 < 5 \,\text{eV}$

hohe Neutralisationswahrscheinlichkeit in tieferen Lagen (oberflächenempfindlich)

Experimentelle Daten Universelle Kurve 10 mittlere freie Weglänge in Å Guide to the eye 10² typische LEED-Energier 10^{1} 100 100 10^{3} 10^{4} 10^{1} 10^{2} kinetische Energie

Low-Energy Electron Diffraction (LEED)

<u>Blochtheorem</u>: Translationssymmetrische OF V(r + R) = V(r)keine Translationsinvarianz senkrecht zur OF $\Rightarrow k_{\perp}$ nicht erhalten Laue-Bedingung: $\Delta k_{\parallel} = G_{\parallel}$, reziproke Gitterstäbe senkrecht zur Oberfläche

Experimenteller Aufbau: monochromatischer e^- -Strahl $E \approx 30-100 \,\text{eV}$ Metallische Gitter (Gegenspannung): Filtern inelastisch gestreuter e^- . Nachverstärkung der Elektronen-Intensität mit MCP Nachbeschleunigung mit $\approx 7 \, \text{kV}$ auf Leuchtschirm, (Fotographie)

SPA-LEED (Spot Profile Analysis):

4 Beugungsmethoden

kein Foto des Beugungsbildes, Detektion über Channeltron, hohe Winkelauflösung über Oktopol-Feld

Auswertung von LEED-Bildern:

Je regelmäßiger die Kristallstruktur, desto schmaler die Reflexe kreisförmige Beugungsstruktur: makroskopische Struktur des e-Strahls, gleichzeitige Beugung mehrerer Rotations- und Spiegeldomänen Gestufte Oberflächen spalten Reflexe auf, unregelmäßig verteilte Inseln erzeugen Peaks mit Untergrund

Dynamisches LEED: I(V)-LEED

kontinuierliche Veränderung der Elektronenenergie ⇒ Spots wandern nach innen + Intensitätsvariation (größere Ewald-Kugel, kleinerer Streuwinkel) Anwendung: Ermittlung der Lagenrelaxation, Untersuchung von Mehrfachstreuung

Reflection High-Energy Electron Diffraction (RHEED)

Experimenteller Aufbau: Streifender Einfall des e^- -Strahls, Primärenergien 10-100 keV, Beugungsbild in Vorwärtsrichtung

Beugungsbild:

Große Ewaldkugel ⇒ viele Schnittpunkte mit reziproken Gitterstäben streifender Einfall: weniger Reflexe, höhere OF-Sensitivität, streifenartige Reflexe aufgrund endlicher Breite der reziproken Gitterstäbe

Anwendung: Beobachtung des Oberflächenwachstums $\theta(t)$ durch Intensitätsozillationen des Spiegelreflexes ((0,0) Reflex beschreibt Glattheit der Oberfläche).

Grazing Incidence Fast Atom Diffraction (GIFAD)

Experimenteller Aufbau: Analog zu RHEED, allerdings neutrale He-Atome (aufwendige Quelle), Detektion mittels MCP

Vorteil: Eindringtiefe He $\approx 0, \Rightarrow$ sehr oberflächensensitiv, keine Aufladung der Probe ⇒ für Isolatoren besser geeignet

5 Elektronische Struktur von OF

OF translations symmetrisch in 2D, keine Invarianz senkrecht zur OF \Rightarrow k_z ist keine Erhaltungsgröße.

<u>Blochtheorem</u>: $\psi(\mathbf{k}_{\parallel}, \mathbf{r}) = \exp(i\mathbf{k}_{\parallel} \cdot \mathbf{r}_{\parallel}) \cdot u(\mathbf{r})$ periodische Amplitude $u(\mathbf{r} + \mathbf{R}_{mn}) = u(\mathbf{r})$

⇒ Fourierentwicklung $u(\mathbf{r}) = \sum_{\mathbf{G}_{hk}} u_{\mathbf{G}_{hk}}(z) \exp(i\mathbf{G}_{hk} \cdot \mathbf{r}_{\parallel})$ Elektronische Struktur der OF beschreibbar durch Projektion der Volumenband-

struktur auf die (k_x, k_y) -Ebene

Austrittsarbeit: $\Phi := E_{vac} - E_F$

Niedrigste Energiedifferenz, die ein Elektron überwinden muss, um den Festkörper zu verlassen, d. h. weit genug entfernen, damit WW mit FK vernachlässigbar klein ist und $E_{kin} = 0$.

wird beeinflusst durch elektronische Struktur des Bulks und der Oberflächenbeschaffenheit

Glühemission: Messung des thermischen Elektronenstroms

Richardson-Dushman-Glg.
$$j = C \cdot T^2 \exp\left(-\frac{\Phi}{k_B T}\right)$$
, $C = \frac{4\pi m_e k_B^2 e}{h^3}$
Richtwerte: Cu (3,4 eV), W (4,5 eV)

Außerdem: Φ variiert für verschiedene Oberflächenorientierungen

Feldemission: Messung des Elektronenstroms bei hohen Feldstärken F

Fowler-Nordheim-Glg.
$$j = C_1 \frac{|F|^2}{\Phi} \exp\left(-\frac{C_2 \Phi^{3/2}}{|F|}\right)$$

 $| C_1, C_2 - Material parameter$

Kelvin-Probe Unmittelbar oberhalb der OF oszillierende Sonde mit Kreisfrequenz	Photoelectron Emission Microscopy (PEEM)
ω , Kapazität C mit $Q = C \cdot U_{Kontakt}$ Kontaktpotential $U_{Kontakt} = (\Phi_2 - \Phi_1)/e$ Austrittsarbeitsdifferenz Messverfahren: Kompensationsspannung anlegen, damit kein Strom mehr fließt	statt mit Elektronen wird die Probe mit UV-Photonen bestrahlt ⇒ Erzeugung von Photoelektronen mit Hg-Lampe oder Snychrotron
\Rightarrow bei bekanntem Φ der Sonde, lässt sich Φ der Probe bestimmen	Kontraste durch: Topographie, chemische Zusammensetzung, Austrittsarbeit
Anwendung: Kelvin probe force microscopy (KPFM)	Beispiel: PTCDA auf Ag(111), Emissionslinie der Hg-Lampe zwischen $\Phi_{Ag(111)}$ <
Jellium Modell für Metalle	$\Phi_{\text{PTCDA/Ag(111)}} \Rightarrow \text{Hell/Dunkel-Kontrast zwischen Substrat und Adsorbatinseln}$
Positiver Ion-Background endet abrupt an der OF	7 Scanning Probe Microscony (SPM)
Fourier entwicklung von Elektronenwellen mit minimaler Wellenlänge $\lambda_F = 2\pi/k_F$	7 Scalling Flobe Microscopy (SFM)
bei der Fermienergie bei $T = 0 \text{ K}$	1981: Erfindung des STM durch Gerd Binnig (Deutschland) und Heinrich Roher
Elektronenverteilung: stehende Elektronenwelle $\lambda_{SW} = \pi/k_F$ mit halber Wellen- länge \rightarrow Struktur errikt Fourierderstellung eines Pachtecknulses	$(Schweiz) \Rightarrow 1986 \text{ Nobel preis}$
\Rightarrow Flektronischer snill-out an der Metalloherfläche Aushildung eines Dipolmo-	1986: Erfindung des AFM durch Gerd Binnig, Calvin Quate und Christoph Gerber
ments, das dem Austritt der e^- entgegenwirkt	Scanning Tunneling Microscopy (STM)
abhängig von der Elektronendichte $\frac{1}{n_e} = V = \frac{4}{3}\pi r_s^3 \Rightarrow \Phi \sim n_e$	Grundprinzip: quantenmechanischer Tunneleffekt elektrisch leitfähige Spitze <u>und</u> Probe in sehr kleinem Abstand ⇒ starke Abstand-
Abhängigkeit von Φ von Oberflächenstruktur und Adsorbaten	sabilangigken, sholl als kegelgioise nu Abstand
<u>Oberflächenbeschaffenheit</u> : Smoluchowski-Glättung Laterale Elektronenverteilung glatter an Metalloberfläche, Elektronenumvertei-	<u>Arbeitsweise:</u> Spannung Spitze-Probe $V_b = 1$ V, Abstand wird verringert bis ge- wählter Setpoint erreicht ist (typischerweise $I = 1$ nA) \Rightarrow Scanner im Feedback, starke Variationen ΛI bei geringen Änderungen Λd

$$T(E) \approx \exp\left(-\frac{2}{\hbar}\sqrt{2m(\varphi-E)}d\right)$$
 (Rechteckbarriere)

Der Strom hängt nicht nur vom Abstand d ab, sondern auch von der lokalen elektronischen Zustandsdichte (LDOS) von Spitze und Probe

constant current mode: *I* = const. Höhe der Spitze z regeln, damit der Strom konstant bleibt

 $\underline{\text{constant height mode}}$: z = const.

z nicht regeln, Signal ist der Fehlerstrom vom Setpoint, problematisch bei unbekannten Proben ⇒ Gefahr der Probenkollision

atomare Manipulation

- a) Laterale Manipulation: Spitze über Atom positioniert, Erhöhung des Strom-Setpoints, Atom bleibt zwischen Spitze und OF gefangen und wird verschoben
- b) Vertikale Manipulation: Spitze über Atom positioniert, positiver Spannungspuls \Rightarrow Bewegung des Atoms zur Spitze und bleibt haften, Bewegung der Spitze und anschließend negativer Spannungspuls
- Anwendung: Schaltung von asymmetrischen Adsorbat-Molekülen durch Spanc) nungsregelung (PTCDA auf Ag(111))
- Scanning tunneling hydrogen microscopy (STHM): Wasserstoff ins Vakuum d) einlassen, kleine Spannung \Rightarrow sehr geringer Abstand, repulsive sehr kurzreichweitige Wechselwirkung zwischen Spitze und Probe, deutliche Verbesserung der Auflösung

Atomic Force Microscopy (AFM)

Arbeitsweise: Dünne Spitze an Cantilever, Rückseite: Spiegelfläche Verbiegung des Cantilevers messbar über Auslenkung eines reflektierten Laser-Strahls auf 4-Quadranten-Photodiode \Rightarrow Umrechnung in Kraft Abstand z verringert, bis Setpoint erreicht wird, typischerweise F = 1 nN

AFM Spitzen:

- **a)** Cantilever aus Si: $L \approx 100 \,\mu\text{m}$, $k \approx 3 30 \,\text{nN} \,\text{nm}^{-1}$
- b) Kolibri-Sensor (length-extension resonator)
- c) qPlus-Sensor (tuning fork), q-Güte

Contact mode AFM: Nutzung der Anziehenden van der Waals-Kräfte, Reichweite: einige 10Å, weiterhin noch elektrostatische und magnetische Kräfte \Rightarrow quasistatische Auslenkung des Cantilevers

bessere Höhenauflösung, wird jedoch selten benutzt, da die Probe beschädigt werden kann

Non-contact mode AFM: Cantilever zur Schwingung angeregt, Wechselwirkung mit Probenoberfläche beeinflusst Schwingung (Amplitude, Eigenfrequenz) ⇒ Amplituden-modulierter oder Frequenz-modulierter Modus

Modifizierte Spitze: Verbesserung des Kontrastes durch Spitzenmodifikation mit Adsorbatmolekülen mit einfacherer Elektronenstruktur, nicht leitfähig

- a) CO-Spitze durch Einlassen von CO ins UHV
- b) CuOx-Spitze aufgesammelt von der Probe

Scanning Tunneling Spectroscopy (STS)

I(V)-Spektroskopie: Variation der Spannung bei festgehaltener Spitze \Rightarrow Aufnahme des Stroms, Ableitung der elektronischen Probeneigenschaften, Sättigungsverhalten bei großen Spannungen

Beispiel: Cu-Ketten auf Cu(111), Untersuchung von Oberflächenzuständen und Quantum Confinement (unbesetzte Zustände in der Cu-Kette)

 $\underline{z(V)}$ -Spektroskopie: konstant halten des Stroms und stattdessen Variation der Spitzenhöhe $z \Rightarrow$ höhere Spannungen möglich

lung erzeugt Dipol, welcher dem spill-out Dipol entgegenwirkt \Rightarrow Verringerung $\operatorname{von} \Phi$

Adorbate: Bildung von Ionen, Spiegelladungen, chemische Wechselwirkungen, Oberflächenzustände

Beispiel: PbPC (Molekül mit Dipol) auf Graphit, Reduktion von Φ bei Monolage, Erhöhung bei zweiter Lage, da sich die Dipole umkehren und kompensieren

Elektronische Zustände

- **a)** Volumenzustand: Freie Elektronen in Vakuum $E > E_{vak}$ und FK
- **b)** Resonanz: Freie e^- im Vakuum $E > E_{vak}$, Bandlückennähe im FK
- c) Evaneszenter Entzustand: $E > E_{vak}$ aber Bandlücke im FK \Rightarrow Evaneszenz im FK
- **d)** Oberflächenzustand $E < E_{\text{vak}}$, im FK Zustand unterhalb des Vakuumlevels und der Fermienergie, Evaneszenz in beide Richtungen \Rightarrow Zustand existiert nur an OF
- **d**)^{*} Bildpotentialzustand $E < E_F < E_{vac}$
- e) Oberflächenresoanz: $E < E_F < E_{vak}$, Zustände erlaubt aber in Bandlückennähe
- **f**) Volumenzustand $E < E_F < E_{vak}$

<u>Oberflächenzustände</u>: parallel zur OF wie freie $e^{-}\left(E = \frac{\hbar^2 k^2}{2m}\right)$ Shockley-OFZustand: Bei (111)-orientierten OF von fcc-Metallen (Ag, Au, Cu),

Schnitt der Paraboloids der Energie mit Fermifläche ergibt Kreis mit Radius k = k_F

<u>Bildpotentialzustände</u>: Elektron erzeugt Spiegelladung im Metall Potential: $V_z = E_{\text{vak}} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{4z}$, $E_n = E_{\text{vak}} - \frac{0.85 \text{ eV}}{(n+a)^2} + \frac{\hbar^2 k_{\parallel}^2}{2m^*}$ dicht unterhalb der Vakuumenergie, Quantendefekt *a* aufgrund endlicher Ein-

dringwahrscheinlichkeit, a = 0...0.5 je nach Position (oben: a = 0, unten: a = 0.5) in der Bandlücke

6 Elektronenmikroskopie - LEEM/PEEM

Low-Energy Electron Microscopy (LEEM)

Aufbau: e^- -gun: $E = 15 \text{ keV}, \Delta E \approx 0.25 \text{ eV}$

Magnetic prism array (MPA) lenkt e^- -Strahl ab

Abbremsen der e^- auf < 100 eV und Kollimation auf Probe

Abbildung des LEED-Bildes (Fourierebene) oder des Realraums möglich

Problem: begrenzte Auflösung durch Beugung, chromatische + sphärische Aberration ⇒ Korrektur chromatischer Aberration durch zweites, identisches MPA

Vorteil: Im Gegensatz zu LEED keine Elektronenkanone im Bild, Beugungsmuster skaliert nicht mit Primärenergie der Elektronen, Erhöhung der Energie vergrößert Radius der Ewald-Kugel

Nicht alle Energien möglich, da die Elektronenwellenlänge nach Bragg-Bedingung $\lambda = 2d\sin(\theta)$ nach unten begrenzt ist

Einbau von Aperturen in die Fourierebene ermöglicht das Durchlassen bestimmter Beugungsreflexe

Bright Field Imaging: Apertur wählt (00)-Spot

Rückgestreute e⁻ ohne lateralen Impulsübertrag, Struktureller Kontrast kann als Phasenkontrast aufgezeichnet werden: Höhendifferenz zwischen Terassen führt zur Phasendifferenz und Interferenz, bei geeigneter Wellenlänge werden die Stufen sichtbar

Dark Field Imaging: Apertur wählt (hk)-Spot

Verkippung der Probe statt Bewegung der Apertur (Vermeidung von Bildfehlern), es werden nur Bereiche hell abgebildet, welche die Bragg-Bedingung mit Winkel θ_{hk} erfüllen

I)

Л)

Vor- und Nachteile von Rastersondenmethoden

Vorteile: Realraumbilder mit exzellenter lateraler Auflösung, detaillierte OF-Informationen: Einheitszelle, Symmetrie Variable Einsatzmöglichkeiten (Luft, UHV) Manipulation von Atomen möglich Lokale spektroskopische Informationen (STS) Lokale Variation der Austrittsarbeit messbar (Kelvin probe) Nachteile: hochsensibel gegenüber mechanischen Schwingungen, elektronischen Störungen, Temperaturinstabilitäten langsames Messverfahren (Minuten) sensibel auf Spitzenform (Doppelspitzen-Artefakte) a) Piezo: Hysterese \Rightarrow Bildverzerrung am Rand, unterschiedliches Verhalten bei verschiedenen Temperaturen STM: nur leitfähige Oberflächen, Faltung der LDOS von Spitze und Probe b) (keine topografische Messung)

AFM: experimentell noch anspruchsvoller als STM, mit modifierten Spitzen c) höhere Auflösung als im STM möglich

8 Elektronenspektroskopie

X-ray photoelectron spectroscopy (XPS)

Doppelanoden-Röntgenquelle \Rightarrow Nutzung von zwei K_{α} -Übergängen (Al,Mg) Röntgenmonochromator: Nutz Bragg-Bedingung zur Energieselektion $\Delta E \approx 0.3 \text{ eV}$ Herauslösen eines Core-Elektrons aus dem FK: Rekombination möglich über Emis sion von X-rays oder Auger electron emission

für 3 < Z < 32 dominiert Auger-Emission,

für schwerere Elemente dominiert X-ray Emission

Monochromatisierung (Vorteile): Unterdrückung von Satelliten von Übergängen mehrfach ionisierter Atome ($K_{\alpha_3}, K_{\alpha_4}$), schmalere Peaks und geringerer Untergrund an Bremsstrahlung

UV-Lichtquellen: Helium-Gasentladungslampen hoher Reinheit bei 77 K, Ausfrieren von Verunreinigungen, differentielles Pumpen der Entladungsröhre, da keine UV-durchlässigen Fenster bei hohen Photonenenergien existieren. ⇒ Probleme: Stabilität der Quelle, Emission mehrerer spektraler Linien

Synchrotron: Stark vorwärts kollimierte Emission von Strahlung variabler Energie und fester Polarisation, allerdings sehr groß und teuer

Spektrometer zur Energieauflösung: Detektion durch Channeltrons

a) Concentric Hemispherical Analyzer (CHA) = 180° -Kugelsektoranalysator

b) Double-Pass Cylindrical Mirror Analyzer (CMA) = zweistufiger Zylinderspiegelanalysator

Interpretation der Spektren: Drei-Stufen Modell

- 1. Photoanregung aus dem Valenzband, maximale Energie $E_{\text{max}} = hv \Phi_{\text{Probe}}$ 2. Transport Richtung Oberfläche: Energieverlust durch inelastische Prozesse ⇒ Auslösung von Sekundärelektronen
- 3. Verlassen der Probenoberfläche, abschneiden von Elektronen mit Energie $E \leq E_{\text{vak}}$,

<u>Problem</u>: $\Phi_{\text{Probe}} < \Phi_{\text{Detektor}}$, dann misst man eigentlich die Austrittsarbeit des Detektors: $E_{\text{max}} = hv - \Phi_{\text{Detektor}}$.

<u>Lösung</u>: Setze Probe auf negatives Potential $|eU| > |\Phi_{\text{Detektor}} - \Phi_{\text{Probe}}|$

Bestimmung der Fermikante: Vergleich der Stufenkante mit Fermi-Dirac distribution, Faltung der FDD mit Gauß Peak mit Halbwertsbreite die der Energieauflösung der Apparatur entspricht \Rightarrow Bestimmung der Energieauflösung Anpassung der Gauß-Funktion an die Messdaten.

Bestimmung der Vakuumkante: (vacuum cutoff)

kante und vacuum cutoff.

Electron Spectroscopy for Chemical Analysis (ESCA):

Untersuchung von Chemischen Komponenten eines Moleküls, Ermittlung der Stöchiometrie durch Vermessung der Peakflächenverhältnisse Weiterhin chemische Unterscheidung zwischen verschiedenen Oxidationszustän-

den möglich XPS Peaks vs. Auger Peaks: zwei Anregungsenergien (Doppelanode)

Skala - kinetische Energie: Auger Peaks konstant, XPS Peaks verschieben sich Skala - Bindungsenergie: XPS Peaks konstant (E_B konstant), Auger Peaks verschieben sich

Probleme von XPS: Auftauchen von Satelliten

Shake-up: E_{kin} des Photo- e^- teilweise an weiteres e^- übertragen, festes ΔE Shake-off: Angeregtes e^- verlässt FK, variables $\Delta E \Rightarrow$ breiter Peak

Vor- und Nachteile von XPS

Vorteile: Schnelles Messverfahren, gutes Signal-Rausch-Verhältnis Detektion aller Elemente möglich (schwerere besser als leichtere) gute Ergänzung mit AES \Rightarrow komplementäre Methoden Untersuchung chemischer Umgebung (Bindungsverhältnisse) ⇒ ESCA Peakflächenanalyse ⇒ Stöchiometrie

Nachteile: Aufwändige Instrumente (Quelle + Monochromator + Analysator) Hohe Flussdichte + Energie ⇒ Strahlenschäden Mikroskopisches XPS zur Bildgebung schwer realisierbar

Störende Effekte: Satelliten, Surface Core level shifts, Shake-up, Shake-Off Satelliten

Auger Electron Spectroscopy (AES)

Auger-Prozess: Notation KLM

- 1. K = ursprüngliches "core hole" (angeregt durch Photon oder Elektron)
- 2. L = Elektron, welches das "core hole" auffüllt
- 3. M = Elektron, wleches den Festkörper verlässt
- Energiebilanz: $E_{kin} = E_B(K) E_B(L) E_B(M) \Phi$

Vereinfachung: Einteilchenbild ohne Relaxations- oder "final state" Effekte, Atom ist infolge des Auger-Prozess doppelt ionisiert ⇒ Loch-Loch Wechselwirkungen und Screening bzw. Polarisation von Umgebungsatomen müssen berücksichtigt werden.

Auger Electron Spectroscopy:

Anregung des "core holes" mit Elektronen \Rightarrow Spektrum enthält keine PES Peaks, detektiertes Signal auf starkem Untergrund ⇒ Differentiation des Spektrums (numerisch oder über Lock-In Modulation)

Hohe Empfindlichkeit auf chemische Umgebung der Atomsorte (ESCA) \Rightarrow Datenbanken chemischer Substanzen zum Vergleich

Vor- und Nachteile von AES

<u>Vorteile</u>: Einfache und kostengünstige Instrumente (e^{-} -Kanone + Analysator) Schnelles Messverfahren, gutes Signal-Rausch-Verhältnis Detektion aller Elemente außer H und He (3-Teilchen Prozess)

Sensitivität über Primärenergie des e^- -Strahls variierbar

laterale chemische Auflösung (SAM) mit sub-µm Genauigkeit, bildgebender Modus einfacher als mit XPS

Informationen zu chemischer Umgebung ⇒ gute Ergänzung zu XPS

Nachteile: Auger Spektrum muss differentiell geplottet werden (hoher inelastischer Untegrund) ⇒ Lock-In Modulation

Einteilchenbild weniger gute Näherung als in XPS

- a) Informationen zu chemischen Verschiebungen verborgen
- b) "final state" Effekte (Loch-Loch Wechselwirkungen und Screening, bzw. Polarisation)
- c) Quantitative Informationen nur mit Vergleichsmessungen

Hohe Flussdichte und Energie ⇒ Strahlenschäden

X-ray Absorption Spectroscopy (XAS)

XPS: Elektron wird aus Rumpfniveau geschlagen \Rightarrow ein e^- weniger im FK

XAS: e^- energetisch auf E_F angehoben \Rightarrow elektronisch angeregter Zustand

Near-Edge X-Ray Absorption Fine Structure (NEXAFS):

Untersuchung der nicht-aufgespaltenen K-Kante des (1s)-Niveaus

Anwendung: Electron Yield Detection (e⁻-Emission proportional zur Röntgenabsorption); Bestimmung von Adsorbatabständen relativ zum Substrat durch Fouriertransformation des oszillierenden e^- -Yields in Kantennähe (Interferenz von -Wellenfunktionen von Adsorbat und Substrat)

Analyse der Orbitalausrichtung im Molekül durch Verwendung verschiedener Einfallswinkel: stehende π -Orbitale durch flachen Einfall angeregt, liegende σ -Bindungen durch senkrechten Einfall angeregt

Angle-Resolved Photoemission Spectroscopy (ARPES)

winkelaufgelöste PES, Detektion von Azimuthal- φ und Polarwinkel ϑ .

Erhaltung von k_{\parallel} zwischen FK und Vakuum und Energieerhaltung $E_{kin} = hv - V$ E_B – $\Phi_{\rm Probe},$ senkrechte Komponente k_\perp Übergang von FK und Vakuum nicht erhalten

Bestimmung der Bandstruktur über quantenmechanische Rechnungen (Fermis goldene Regel, Dipolnäherung) in einem "three-step model"

Vorteile: Direkte Informationen zu elektronischen Niveaus, direkte Vergleichbarkeit zur Theorie mit geringen Modellierungsaufwand Polarisationsabhängigkeit + Auswahlregeln ⇒ Informationen zu Symmetrien Hohe Energie- und Impulsauflösung, oberflächensensitiv

Nachteile: Erfordert saubere, atomar glatte Probenoberfläche im UHV kann nicht in Abhängigkeit von Druck oder magnetischen Feldern eingesetzt werden

Endzustand der Photoanregung + Elektronenemission: Kation ⇒ schlechte Vergleichbarkeit mit optischer Absorption (hier: neutraler Endzustand)