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N-body simulation
the solar system and swing-by maneuver in Newtonian gravity
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ABSTRACT
This is a review on creating a n-body simulation and implementing a swing-by maneuver where we restrict to the sun and the
planets of the solar system as well as one space probe in the swing-by part as point-like masses in Newtonian gravity.
In this paper we consider the implementation of the solar system and compare different integrators (forward Euler, Runge-Kutta
and leap-frog method) with respect to their accuracy and convergence behaviour. Further we consider the dependence on the
aimed error. Secondly we consider the implementation of a swing-by maneuver at Jupiter using the example of the New Horizons
mission and determine the dependence of the minimum distance to Jupiter on the variation of initial angle with respect to the
ecliptic plane and starting velocity.
Overall, we were able to produce an accurate simulation of the solar system for 248 years using the Cash-Karp method. This

appears to be a necessary tool for weighting numerical errors with numerical cost to end up at both: appropriate integration times
and good approximations. Based on that it was possible to simulate direct flights to other planets as well as swing-by maneuvers
for Jupiter and Saturn. The success of these maneuvers hugely depends on the initial conditions which have to be determined
carefully.
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1 INTRODUCTION

Astronomical n-body simulations are one of the primary tools to
model the movement of large astronomical objects with an appropri-
ate scaling. As the technologies for space exploration develop, it is
already a vital tool for planning and calculating journeys to extrater-
restrial objects. Despite significant hardware improvements, there
are limitations on the accuracy of such simulations. All methods are
limited by their numerical errors. In order to do numerical simula-
tions one resorts to highly efficient codes. As this paper will show
the chosen simulation method has a significant impact on the final
probe trajectory. Furthermore the used algorithms simulate a direct
probe flight from Earth to different planets in our solar system, as
well as a swing-by maneuver.

2 CHOICE OF INTEGRATOR SCHEMES

In order to find differences of explicit and symplectic integrator
schemes we chose to implement the explicit forward Euler scheme
and the symplectic leap-frog method. In computational simulations
the accuracy of the results must be weighted against the numeri-
cal cost. Important markers are the convergence properties of the
integrators, the accuracy and the suitable step size needed, which
determines the speed of the code. The simulation shall, as is also
physically reasonable, leave quantities like energy and angular mo-
mentum conserved.
Since both methods have the disadvantage that they converge only

to low order (first order for Euler and second order for leap-frog) we
chose to implement the Runge-Kutta-4 (RK4) scheme which is an
explicit integrator scheme converging to fourth order.
Having not just a solar system to implement but also space probes

starting from a planet it is necessary to run the code with different
time scales for the sake of efficiency, where short step sizes have to
be used near planets and larger ones if the probe is far out in space
and no quick changes in velocity happen. Therefore we chose to
implement and for all simulations work with the more sophisticated
Cash-Karp (CK) method which compares integration results of two
embedded Runge-Kutta schemes converging to fourth and fifth order.
The difference Δ in the solution of both integrators is then of order
O

(
dC5

)
. For a given error of size Δ0 we should have used a step size

of

dCnew = dCold
����Δ0Δ ���� 15 . (1)

Thismeans after every integration step the step size is adaptedmatch-
ing the given error Δ0. Thus the CK-method lowers the step size if
necessary and enlarges it if possible. A table with the necessary
prefactors can be found in W.H. Press et al. (1992).
In order to check if the integrator schemes were implemented

correctly the behaviour of the numerical error can be considered
as the step size decreases. W.l.o.g. assuming that the integrator has
a formal order of convergence of O(ℎ=) the error should decrease
with the step size due to a power law: 5 (ℎ) = < · ℎ=, which can be
rephrased in terms of a linear function in a log-log (error - step size)
plot as follows:

5 ′(ℎ) ≡ log
(
5 (ℎ)
<

)
= = · log(ℎ) = = · ℎ′. (2)

Thus the log-log plot should show a linear correspondence between
error and step size with an ascend equal to the order of convergence
=.
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Figure 1. Convergence behaviour of the Runge-Kutta-4 method for integra-
tion of the negative sine function.

To check the correct implementation numerically the negative sine
function has been used as a test functionwhich had to be integrated by
the routines. Since the acceleration function of the n-body problem
is vector valued the test integration has been done for all cartesian
components. The results of the different components agreed exactly
and thus the graphs were done only for the first component. To
determine the real order of convergence a fit 5 (G) = 0 · G1 has been
used for all integrator schemes. Because the RK4-method is used
for integration later on its result is given in figure 1. Here we can
see the correct convergence behaviour of fourth order which is also
approximately met by the fitted function. Furthermore we notice the
characteristic behaviour of integrator schemes, namely that if the step
size decreases far enough the error increases again due to the amount
of numerical calculations that have to be performed. Interestingly
and in contrast to the forward Euler method, the numerical error
approaches the region ofmachine accuracy already at rather large step
sizes, which could also be noticed for both integrator parts in the CK-
method. Further description and graphs of the convergence behaviour
of the other integrator schemes can be found in the appendix.

All of the implemented integrator schemes (forward Euler, RK4,
leap-frog and CK) show the correct convergence behaviour we ex-
pected, which leads us to assume that they were implemented cor-
rectly and we can use them for further simulations.

3 MODELLING THE SOLAR SYSTEM

As initial data for the solar system we used Folkner et al. (2014)
supplying data for June 28, 1969 in the ICRF2 frame. For simplicity
we picked this frame for numerical calculations where the coordinate
origin is the center of mass at initial time C = 0. Although the center
of mass has a non-vanishing momentum in this frame and thus is not
fixed, it barely varies for one orbit of Pluto which is the largest period
we ever consider. We have further limited ourselves to implement
only the sun, the planets and Pluto.

3.1 Numerical implementation of gravity a n-body interaction

The basic idea for building and simulating a solar system as an =-
body system is that the interactions can be broken down to two-body
interactions for which the third Kepler law holds:

const. =
)2

03
=

4c2

� ("� + <)
"��<
≈ 4c2

�"�
. (3)

The law simply states that the ratio of )2 and 03 is a global con-
stant for the planets of the solar system where the constant can be
determined considering Earth. Since it is convincing in terms of the
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n-body simulation 3

Figure 2. Trajectories for the solar system for a period of 248 years in three
dimensions. The orbit of Pluto is tilted with respect to the ecliptic plane which
lies mainly in the GH-plane.

distance and time scales to be considered we work in astronomi-
cal units (AU) for distances and years (yr) for times, where we have
) = 1 yr and 0 = 1AU for Earth and thus the global constant becomes
1 yr2/AU3. Therefore the Kepler law simplifies to�" ≈ 4c2AU/yr2
and Newton’s law of gravity becomes

®� = −�"�<
A3

®A ≈ −4c
2<

A3
®A (4)

which can be rewritten in components of acceleration of the i-th body
due to the j-th body

®08 9 ≈ −
4c2

(
®A8 − ®A 9

)
AU3/yr2√(

ΔG8 9
)2 + (

ΔH8 9
)2 + (

ΔI8 9
)23 ΔF8 9 ≡ F8 − F 9 . (5)

To avoid division by zero we define 088 := 0 which simply means
that a body does not accelerate by itself. Calculating the =-body solar
system therefore comes down to evaluating all =(= − 1)/2 different
two-body interactions and summing up all contributions for each
body in order to arrive at the next (intermediate) time step and add
contributions of several intermediate steps in a more sophisticated
way to end up at the next time step with higher accuracy.
Following this idea and running the simulation for one orbit of

Pluto one gets the trajectories of figure 2, where one notices that all
the planet orbits lie approximately in a common plane, the ecliptic
plane, and just the orbit of Pluto is significantly inclined against it.

3.2 Numerical analysis

Looking at the energies of the solar system presented in figure 3 we
notice from the continuous lines that the kinetic as well as the poten-
tial energy oscillate with a frequency that corresponds to the orbiting
time of Jupiter as the largest contribution which is marked by thin
vertical lines. A second contribution with a frequency corresponding
to the orbiting time of Saturn, marked by thicker vertical lines, arises
as can be seen from the periodicity of the dashed lines which are
kinetic and potential energy if the solar system is evolved without
Jupiter. The total energy of the system however stays constant as it
is expected of a closed system and is negative which shows that the
system is gravitationally bound.
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Figure 3. Comparison of solar system energies. The dashed lines indicate the
energies without Jupiter. It can be seen that the periodicity of the kinetic and
potential energy is dominated by the orbital periods of Jupiter (11.86 yr) and
Saturn (29.46 yr). Note the different energy scaling for solid and dashed lines.
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Figure 4.Calculated trajectories of Mercury for an integration time of 248 yr.
While theRunge-Kutta andLeap-frog form stable solutions, the forward-Euler
scheme gains energy over time.

Now we investigate the behaviour of different integrator schemes
on the solar system and compare explicit methods (Euler-forward and
Runge-Kutta) with symplectic methods (leap-frog). For the analysis
we use the orbit of Mercury since its orbital velocity is the highest in
the solar system and thus it is most prune to numerical errors in the
integration scheme. We test the integration methods for a fixed step
size of dC = 1.5 · 10−5 year ≈ 8min and a time period of 248 years.
The step size was chosen such that the error of the RK4-scheme is at
the order of machine accuracy. The results of the various integration
schemes are illustrated in figure 4. Note that not every calculated
data point is displayed. As expected the forward Euler scheme is not
energy conserving as Mercury seems to gain energy over time and
taking an orbit similar to Earth. For the RK4- and leap-frog-scheme
we do not observe a substantial difference.

Now we switch back to the CK-method of adapting the integration
step size for a given error in the integration. Using the RK4-scheme
we again integrate the trajectory of Mercury for 100 years. This was
done in figure 5. We observe that a given error of Δ0 = 10−10 AU is
already sufficient to correctly integrate the trajectory of a planetary
system for at least a century. However, for objects on which large
accelerations act, a smaller error is needed to obtain the correct
trajectory. Small changes of the initial condition of a space probe at
launch may lead to large deviations in the final trajectory. Thus, in
the following we will choose a desired error of Δ0 = 10−18 AU.
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Figure 5. Calculated trajectories of Mercury for an integration time
of 100 years for different errors Δ0 using the CK-method. Between
Δ0 = 10−18 AU and Δ0 = 10−10 AU no deviation in the trajectories is vis-
ible, whereas for Δ0 = 10−7 AU the error gets too large.

4 DIRECT FLIGHT TO BODIES

One of our goals was to implement a space probe that is sent out on
a planet and reaches a target body or at least the region of the Kepler
orbit where the body resides. We wanted to have a fully numerical
approach that does not depend on an analytical approximation. For
simplicity in this and all further simulations just the initial conditions
for the bodies and space probes are set and once done the system
is evolved in time without any course corrections for the probe.
The space probe starts at the surface of the starting-object with an
absolute initial velocity without being accelerated first to reach it.
By the notion of an absolute velocity the velocity with respect to the
origin of the ICRF2 frame is meant. The space probes are treated as
mass-less test objects of vanishing radius and the bodies are treated as
spheres, where for their radii and orbit parameters we used data from
the planet fact sheets in Williams (2019) collected in table A1. In
order avoid problematic small distances of space probes and planets
a crash function checks whether a probe is closer to a body than its
radius. It then crashes and is eliminated from further calculations.
Reaching a body directly is done in three steps: first we have to find

the interval of absolute initial velocity for the probe to return close to
the region of the targets orbit and remember the relative velocity to
the start-object, since it varies during one of its years. Secondly we
adjust the starting time to come close to the target body and finally
modify the part of the velocity perpendicular to the ecliptic plane in
order to actually reach a body whose orbit is tilted a bit with respect
to the ecliptic.
The developed algorithm should be capable of calculating the

interval of absolute velocity for a space probe starting from any
planet to any outer body meaning that e. g. Mars to Earth would not
be possible but Earth to Mars is.

4.1 Calculating the interval of absolute velocity

To reach planets directly the space probe is demanded to return at a
distance 3 which lies between the smallest and largest distance of the
target body from the origin 0(1 − Y) ≤ 3 ≤ 0(1 + Y), which is the
region where the planet can be found as can be seen from figure 6.
That means finding values of the initial velocity which correspond to
amaximal probe distance of 0 · (1−Y) and 0 · (1+Y). All the velocities
in between are assumed to be good to reach the target planet directly.
The algorithm that determines them works as follows:

After setting start object and target, the orbit parameters 0 and 4 of
the target are read in and the maximal andminimal returning distance
is calculated. For the initial velocity the value of E = 10AU/yr was

G

H

0

0 (1 − Y) 0 (1 + Y)

Figure 6. Determine the returning interval 0 · (1 − Y) ≤ 3 ≤ 0 · (1 + Y) of
a space probe for the orbit of Pluto (thicker line).
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Figure 7. Trajectories for probes corresponding to calculated minimal and
maximal initial velocity starting from Earth to different outer bodies.

picked which is above the solar escape velocity from earth. Ten space
probes with evenly distributed velocities from 1 to 10AU/yr pointing
in the direction of the movement of the start-object are initialized and
set in front of the planet at the distance of its radius to start directly
from the surface in the direction of motion as it is done for real
launches in order to save energy. The solar system with all probes is
evaluated for a sufficiently long period for the space probes to reach
the target. During the time evolution we keep track of the velocity
and the distance to the origin of each space probe to check whether
they returned in the sought distance interval. After the evolution we
check what the minimal velocity was for each probe and how far they
were from the origin when they had that velocity. If those distances
are not inside the interval the velocities have to be refined and we
initialize 100 probes with velocities from 0.1 to 10.0.

If a velocity is inside (e.g. 9.0 and 9.1) the algorithm looks how
far the interval can be extended and initializes 20 probes: 10 below
the lowest and 10 above the highest velocity for which the maximal
distance was inside the interval. Now we have two intervals with
refined velocities (e.g. 8.91 up to 9.00 for the lower velocity limit
and 9.10 up to 9.19 for the higher velocity limit). Successively the
algorithm tries to calculate the velocity limits to higher accuracy, up
to a certain decimal place which was set in the beginning and finally
shows both calculated values.

For different target planets the velocity interval was calculated
as shown in table A2. The velocity algorithm refused service for
Neptune thus the values represented are the closest values where
the algorithm said ’too low’ and ’too high’ meaning that the corre-
sponding probes returned too close or too far from the origin.Manual
adjustmentswere performed to find the appropriate starting velocities
for Neptune. In figure 7 the trajectories for probes with the calculated
initial velocities are shown.
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Figure 8. Trajectories for probes sent to Plutos orbit from different planets of
the solar system (dashed lines). The plots were chosen from both the lower and
the upper velocity limit. For reasons of clarity only one of them is displayed
for each planet.

Furthermore we also want to generalize the algorithm for differ-
ent starting planets now looking for trajectories towards Pluto. Here
the interval of absolute velocity has been calculated as well (c. f. ta-
ble A3). However, the algorithm refused service starting from Jupiter.
The presented values for the gas giants were found manually and are
presented in figure 8. Note that for Plutos rather elliptical trajectory,
reaching the orbit is a challenging task. For example consider the
Uranus trajectory. Here the probe reached the nearly circular orbit of
Neptune which also intersects Plutos orbit. Even though the Uranus
trajectory completely misses Plutos real trajectory, the distance is
actually correct. For Neptune the calculation was omitted since its
trajectory lies partially in Plutos orbit.

4.2 Optimizing the starting time and velocity

As we have seen in the previous section, the launch time of the space
probe is important, especially when we want to reach the planet and
not just its trajectory. At first we need to know at which time the
probe has to be sent from earth in order to interact with the planet.
We estimate the starting time analytically using Keplers third law,
which can be used to calculate the time ) of a Hohmann-transfer

)2

03
=
4c2

�"�
⇒ ΔC =

)

2
=
1
2

√
4c203
�"�

, with 0 =
0♁ + 0X
2

. (6)

Now we can determine the angle between earth and the target planet
at the time of launch using the illustration in figure 9. We assume
a circular planetary orbit where the space probe intersects with the
planet after half a period of the Hohmann-transfer.
Now we simply integrate the planets until the condition of

i = c − lΔC is met. Since there exist two planetary configurations
with the same angle we also demand that i should decrease with
increasing time. This calculation is not perfect, since the planetary
orbits are not circular, however the first estimate gives the correct
starting time within a time span of 0.1 year. Now we can use an algo-
rithm to further adjust the first estimate of the starting time. For a first
velocity estimate we use the minimum velocity values calculated in
section 4.1. A step-wise increase of velocity is then used to minimize
the distance between probe and target planet. The numerical scheme
can be applied to all outer planets in the solar system. The results are
shown in figure 10. The algorithm is able to send the probe to within
0.1AU of the target planet. For Pluto, however, the estimate is worse
since its orbital plane is tilted (c. f. figure 2).

♁

☼

)0

)1

X

lΔC

i

ΔC = )1 −)0

Figure 9. Schematics for an analytical estimate of the starting angle i for
a Hohmann-transfer between earth ♁ and Jupiter X. Using the Hohmann-
transfer time ΔC and the angular velocity l = 2c/) (c. f. table A1) of the
planet the starting angle between Earth and the target planet is given by
i = c − lΔC .
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Figure 10.Calculated trajectories (dashed lines) of probes starting fromEarth
towards different planets of the solar system.

4.3 Adjusting the ecliptic angle

The planets (except for Pluto) move approximately in the ecliptic
plane. In order for a space probe to closely approach a target body
that does not lie in exactly the same plane as the start-object, the part
of the probes initial velocity perpendicular to the ecliptic plane has
to be adjusted in order to minimize the distance of the probe to the
target body measured perpendicular to the ecliptic plane. We assume
that the relation between perpendicular velocity and perpendicular
distance is given by an affine function: 3⊥ (E⊥) = < · E⊥ + =. As is
evident from figure 2 the normal part of the initial velocity vector
standing perpendicular on the ecliptic plane encloses a small angle
i with the I−axis and thus we have

EI = cos i · E⊥
i small
≈ E⊥. (7)

A similar relation holds for the I-component of the distance 3I and
the perpendicular distance 3⊥ such that we can use instead of the
perpendicular distance the I-distance function depending on the
I-component of the velocity instead of the perpendicular part:

3⊥ (E⊥) = < · E⊥ + = ↦→ 3I (EI) = < · EI + =. (8)

Then we launch the current probe another one with slightly differ-
ent EI component and get two different points, each a tuple (EI , 3I).
From those two points we can find the zero point 3I (EI) = 0 of
the approximated affine function and thus the perpendicular velocity
which minimizes the perpendicular distance to first order.
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5 THE SWING-BY MANEUVER

Realizing a swing-by maneuver works except for a few more steps
quite similarly to the direct flight method. In order to gain energy
from the planet, the space probe must pass the planet from behind.
This means for the optimization process it is advantageous to start
at velocities that are too high rather than too low. For the transfer
and starting time we use again the values for direct flight calculated
in section 4.2. We assume that the starting time is kept fixed and
optimize by this assumption the starting angle with respect to the
ecliptic plane. This results in a new I-component of the probes initial
velocity. After that, the velocity of the probe is optimized using a
more sophisticated approach which gets along with a rough estimate
of the starting velocity as a first input. This reduces the distance
perpendicular to the ecliptic plane.

5.1 Adjusting the ecliptic angle

This step works the same as in the direct approach case except for
the fact that the two trajectories have to be chosen such that they
pass behind Jupiter in order for the probes to gain energy from the
swing-by. Then launching two probes with slightly different velocity
I-components and calculating a new one with the angle adjusting
routine for the space probe that reduces the distance is exactly the
same as before. However, this adjustment was only necessary for the
trajectory to Pluto since the other planets are moving in the ecliptic
plane. Therefore this optimization part was omitted for the other
planets, since it did not improve the results.

5.2 Adjusting the velocity

In order to adjust the velocity in the ecliptic plane we assumed a
parabolic dependence of the distance 3 on the absolute initial velocity
of the probe. This assumption was based on simulations with Jupiter,
one of which is displayed in figure 11. We need a trajectory behind
Jupiter for which we start three probes: the one we already have and
twowith slightly larger and smaller absolute velocity.We obtain three
tuples of probe velocity and the planets ecliptic distance. From those
we can determine the minimum of the planets distance in the ecliptic
plane with points (E1, 31), (E2, 32) and (E3, 33) by a formula found
here Brünner (2003):

Emin =
1
2
E22 (33 − 31) − E

2
1 (33 − 32) − E

2
3 (32 − 31)

E2 (33 − 31) − E1 (33 − 32) − E3 (32 − 31)
. (9)

This gives the optimized velocity to second order. Then we can
perform a fine search in an interval Emin ± 0.1AU/yr to find the
minimum velocity. The velocity dependence for these intervals is
shown in figure 11. For most planets the minimum lies in the middle
of the interval, which indicates, that this first estimate was already
coming close to the desired minimum.

5.3 Modelling New Horizons

In order to verify the integration method and test the optimizing
algorithm we used the trajectory of the interplanetary space probe
New Horizons which was launched on January 19, 2006 by NASA
with an initial velocity of 16.26 km s−1 Scharf (2013). We used these
initial conditions to start a probe at Earths radius with this initial
relative speed (with respect to Earth). The resulting trajectory is
displayed in figure 12.
However, during the flight towards Jupiter the velocity of New

Figure 11. Dependence of minimum distance between space probe and the
target planet on the initial probe velocity. For the initial considerations the
dependence looked to be parabolic, however, investigations for the outer planet
show, that the assumption of a linear dependence might have been sufficient.

Figure 12. The trajectory of the New Horizons interplanetary space probe
integrated with the initial conditions (start time January 19th, 2006) and ve-
locity (16.26 km s−1). The dashed (dotted) lines show an improved trajectory
by first adjusting the starting velocity (angle) and then optimizing the angle
(velocity). We observe that for the original data, the space probe would transit
in front of Jupiter leading to a deceleration.

Horizons was adjusted several times by thrusters correcting the tra-
jectory. This may be one reason why the integrated trajectory does
not reach Pluto after 9.5 years (the fly-by was on July, 14 2015). Fur-
thermore, slight deviations from the starting position and velocity
change the final trajectory dramatically since the minimum distance
to Jupiter during the swing-by maneuver is very important. In order
to improve the starting trajectory, we fixed the launch date and made
adjustments to the direction and magnitude of the starting velocity
using the algorithms described in section 5.1 and 5.2. Using these
methods the minimal distance to Jupiter could be reduced to 106 km.
This matches the minimal distance of the New Horizons trajectory
of 2.3 · 106 km well JHU (2007). However, this new trajectory still
misses Pluto by a large amount. This is probably due to the lack of
swing-by maneuvers also performed on Uranus and Neptune in the
original mission.

We also examined the absolute velocity of the space probe as a
function of time as shown in figure 13. Here we observe, that the
velocity for the trajectory calculated by the original starting data was
reduced during the swing-by since the probe passed Jupiter from the
front. Therefore the probe did not reach solar escape velocity. This
problem was avoided in the algorithm by starting at larger velocities
and minimizing the distance by a step-wise reduction of starting
velocity leading to swing-by trajectories behind Jupiter. Then we
observe a velocity increase of ΔE ≈ 3.79 km s−1 which corresponds
well to the New Horizons mission of 3.890 km s−1 JHU (2007).

MNRAS 000, 1–8 (2021)
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Figure 13. The absolute velocity of the New Horizons interplanetary space
probe as a function of time. For the adjusted trajectories we observe an
energy gain due to the successful swing-by maneuver. For calculations using
the original starting conditions, the space probe is decelerated by Jupiter.
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Figure 14.Trajectories of space probes for swing-bymaneuvers at the planets.
A significant energy gain was only obtained for the swing-by maneuvers at
Jupiter and Saturn where the minimal distance was about 96 000 km which is
1.5 times the radius of Jupiter.

5.4 Application to custom space probes

Wenowwant to apply the swing-bymaneuver to custom space probes
with the goal to achieve a successful swing-by maneuver for each
planet individually. However, due to the larger distance and lower
masses, a swing-bymaneuver with Uranus, Neptune or Pluto is rather
difficult to achieve. The latter is particularly challenging, since its
orbit is tilted with respect to the ecliptic requiring extra care. We use
the starting times acquired in section 4 for the direct flight to the
planets and take the calculated velocity as the first initial condition.
We now apply the same algorithmswhichwere performed on theNew
Horizons probe to the other planets of the solar system. The results are
shown in figure 14. We observe, that successful swing-by maneuvers
were only realized for Jupiter and Saturn, which is probably due
to their high masses. The minimum distances to the planets can be
found in figure 11 and are nearly the same for the Jupiter and Saturn
trajectory with 3min ≈ 96 000 km. These trajectories are presumably
as good as technologically possible with real space probes because
the distance is only one and a half times the radius of Jupiter.
We also analyzed the energy gain of the swing-by maneuvers

at Jupiter and Saturn. The absolute velocity of the space probe is
shown in figure 15. For Jupiter we observe a velocity increase of
ΔE = 2.6AU/yr ≈ 12.3 km s−1. This is approximately the velocity of
New Horizons when it will reach a distance of 100AU in 2038 Buck-
ley (2006).
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Figure 15. Energies of space probes for swing-by maneuvers at different
planets. Trajectories of space probes for swing-by maneuvers at the planets.
The largest velocity increase was achieved for Jupiter with ΔE = 2.6AU/yr.

6 CONCLUSION AND OUTLOOK

The numerical analysis showed that applying the CK-method is the
preferred method for a n-body simulation. We observe that the error
of position should be less than 10−15. We used this algorithm to
simulate the n-body dynamics of the solar system using all planets
and Pluto mutually interacting gravitationally. Furthermore we im-
plemented a scheme of starting a space probe at arbitrary planets and
sending it to outer planets. For that we wrote an algorithm optimizing
the velocity in the ecliptic plane and the starting angle with respect
to the ecliptic plane. The success of the implementation was shown
by optimizing the flight of the New Horizons space probe, realiz-
ing a swing-by maneuver with a velocity increase comparable to the
original mission. Then we applied the scheme to find other possible
trajectories for a swing-by maneuver and successfully achieved them
for a flight to Jupiter and Saturn which lead to velocity increases
above any space mission of our knowledge. However the algorithm is
just able to perform a single swing-by maneuver. We would have to
further optimize the algorithm with additional parameters to achieve
multi swing-by maneuvers such as the Voyager 2 mission in 1977
with a total of four swing-by’s. For that we would suggest the im-
plementation of a simplex algorithm which is better suited for the
minimization problem, where different parameters such as starting
time and velocity components can be adjusted simultaneously.
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Table A1. Orbit parameters taken for calculations and radii of the bodies for
initial positions, crash-checking and starting time calculation.

Body a / AU Y r / 10−3AU T / yr
Mercury 0.387 0.2056 0.01630 0.24101
Venus 0.723 0.0068 0.04045 0.61562
Earth 1.0 0.0167 0.04263 1.00000
Mars 1.524 0.0935 0.02270 1.88085
Jupiter 5.204 0.0489 0.47788 11.862
Saturn 9.583 0.0565 0.40286 29.447
Uranus 19.201 0.0457 0.17084 84.016
Neptune 30.048 0.0113 0.16553 164.79
Pluto 39.237 0.2488 0.00794 247.94

Table A2. Intervals of absolute and relative velocities for space probes starting
from Earth to different bodies at initial time C = 0.

Target Emin/AUyr Emax/AUyr E relmin/
AU
yr E relmax/AUyr

Mars 8.5889 8.6628 2.4093 2.4832
Jupiter 9.1719 9.2317 2.9923 3.0521
Saturn 9.3833 9.4187 3.2037 3.2391
Uranus 9.5388 9.5561 3.3592 3.3765
Neptune 9.5996 9.6096 3.4200 3.4300
Pluto 9.6021 9.6467 3.4225 3.4671

Table A3. Intervals of absolute and relative velocity to the start-object for
space probes going to Pluto starting from different planets at initial time C = 0.

Start Emin/AUyr Emax/AUyr E relmin/
AU
yr E relmax/AUyr

Mercury 14.4477 14.4847 4.1255 4.1625
Venus 11.0100 11.0517 3.6692 3.7109
Earth 9.6021 9.6466 3.4225 3.4670
Mars 7.4409 7.5045 2.1498 2.2134
Jupiter 15.1980 15.2205 12.5734 12.5959
Saturn 9.5923 9.6018 7.4982 7.5077
Uranus 5.9964 6.0225 4.4935 4.5001
Neptune — — — —

APPENDIX A: APPENDIX

The following figures describe the convergence behaviour of the error
for the integration of the negative sine function. For the forward Euler
scheme the convergence behavior is linear as expected. The fitted
function confirms the linear convergence as can be seen in figure A1.
Even for small step sizes the error is quite large. For the leap-frog
method a convergence behaviour of second order could be verified
by the fitted function which was expected (c.f. figure A2). One also
notices that the error is quite large and it takes small step sizes to
have an error near to the machine accuracy but is still off by several
orders of magnitude.
For both integrators of the CK-method we see in figures A4 and

A3 that they converge as expected to fourth and fifth order, which
could be verified by the fitted functions. For both schemes the error
increases if the step size gets too small due to the amount of numerical
calculations that have to be performed. Both schemes have a minimal
error close to themachine accuracywhere the fifth-order part is closer
than the fourth-order part and the errors are quite small already at
larger step sizes.
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Figure A1. Convergence behaviour of the forward Euler method.
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Figure A2. Convergence behaviour of the leap-frog method.
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Figure A3.Convergence behaviour of the RK5 part of the Cash-Karpmethod.
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Figure A4.Convergence behaviour of the RK4 part of the Cash-Karpmethod.
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