Mößbauer-Effekt

Martin Beyer

01. Juli 2020

Martin Beyer

Mößbauer-Effekt

01. Juli 2020 1 / 17

Gliederung

1) Grundlagen

- Kernzerfälle, $\gamma\text{-}\mathrm{Strahlung}$
- Linienverbreiterung
- Rückstoß und Energieverschiebung

Mößbauer-Effekt

- Apparatur
- Erklärung
- Debye-Waller-Faktor
- 3 Mößbauer-Spektroskopie
 - Umsetzung im Praktikum
 - Anwendungen

J Zusammenfassung

Zerfallsschema von 57 Co

[1] DEMTROEDER, W.; Experimentalphysik 3: Atome, Moleküle und Festkörper.

Martin Beyer

01. Juli 2020

3/17

Linienverbreiterung

Natürliche Linienbreite Γ

• HEISENBERG'sche Unschärferelation: $\Delta E \cdot \Delta t \geq \hbar$

• Linienbreite von ⁵⁷Fe:
$$\Gamma = \frac{\hbar}{\tau} = 4.7 \cdot 10^{-9} \,\text{eV}$$

• Frequenzverschiebung: $\omega' = \omega_0 + \vec{k} \cdot \vec{v}$

• Linienverbreiterung von ⁵⁷Fe (Gas):

$$\Delta \omega \sim \omega_0 \sqrt{\frac{T}{m}} \approx 2 \cdot 10^{-3} \text{ eV}$$

Rückstoß und Energieverschiebung

• Rückstoß:
$$\vec{p} = \hbar \vec{k} \Rightarrow \Delta E \approx 2 \cdot 10^{-3} \, \text{eV}$$

• Energiebilanz:
$$\hbar\omega = \hbar\omega_0 + \hbar(\vec{k}\cdot\vec{v}) - \frac{\hbar^2k^2}{2m}$$

Mößbauer-Effekt

- Entdecker: Rudolf Mößbauer (Nobelpreis 1961)
- Experiment [2]: Untersuchung des 129 keV-Übergangs von ¹⁹¹Ir
- überraschendes Resultat: Rückstoßfreie Kernresoanzabsorption von γ -Strahlung bei tiefen Temperaturen.
- Voraussetzung: Atome im Kristallgitter eingebaut

Mößbauer 1929-2011

 [2] MÖSSBAUER, R.; Kernresonanzfluoreszenz von Gammastrahlung in ¹⁹¹Ir. Z. Physik 151, 124–143 (1958)

Martin Beyer

Mößbauer-Effekt

Mößbauer-Effekt: Die Apparatur

[3] nach SCHATZ, G.; WEIDINGER, A. Nukleare Festkörperphysik; Teubner, 1992

7/17

Martin Beyer	Mößbauer-Effekt	01. Juli 2020
--------------	-----------------	---------------

Mößbauer-Effekt

Die Erklärung

- Rückstoß kann von Phononen (gequantelte Gitterschwingungen, $\hbar\omega$) aufgenommen werden.
- $E_{\text{Rückstoß}} < \hbar \omega$: Rückstoß vom gesamten Gitter aufgenommen.
- Folge: kein Energieübertrag auf das Gitter, unverschobene Spektrallinie

Debye-Waller-Faktor f

- Wahrscheinlichkeit eines unverschobenen Übergangs
- Erklärung mithilfe des Debye-Modells

$$f \approx \exp\left[-\frac{E_{\text{Rück}}}{k_B\Theta}\left(\frac{3}{2} + \frac{\pi^2 T^2}{\Theta^2}\right)\right] \quad \text{für } T \le \Theta$$
 (1)

9/17

Eigenschaften einer optimalen Quelle:

- kleine Rückstoßenergie $E_{\rm Rück}$ (große Massem)
- hohe Debye-Temperatur $\Theta~({\rm Fe:}~\Theta=470\,{\rm K})$
- geringe Temperatur T
- hohe Lebensdauer des Übergangs τ (geringe Linienbreite)
- hohe Lebensdauer des Mutterisotops

 [3] SCHATZ, G.; WEIDINGER, A. Nukleare Festkörperphysik; Teubner, 1992

 Martin Beyer
 Mößbauer-Effekt

 01. Juli 2020

Transmissionsspektrum von Eisen

Magnetische Hyperfeinstrukturaufspaltung von $^{57}\mathrm{Fe}$

Transmissionsspektrum von Eisen (vergrößert)

Linienintensität magnetisiertes Eisen

[4] GONSER, U.; Mößbauer Spectroscopy. Topics in Applied Physics; 1975

Martin Beyer	Mößbauer-Effekt
Martin Beyer	Mobbauer-Enekt

Linienintensität magnetisiertes Eisen

[4] GONSER, U.; Mößbauer Spectroscopy. Topics in Applied Physics; 1975

Martin Beyer	
--------------	--

Mößbauer-Effekt

01. Juli 2020

Quadrupolaufspaltung von Eisensulfat $FeSO_4$

Zusammenfassung

Mößbauer-Effekt

- Rückstoßfreie Kernresoanzabsorption im Festkörper
- Debye-Waller Faktor: Wahrscheinlichkeit rückstoßfreier Übergänge
- Eigenschaften idealer Quellen: $m_{\text{Kern}} \uparrow, \Theta \uparrow, \tau \uparrow, T \downarrow$

Mößbauer-Spektroskopie (Anwendungen)

- Isomerieverschiebung (chemische Eigenschaften)
- Magnetisierung (Linienintensität)
- elektrische Quadrupolaufspaltung
- Magnetische Dipolwechswelwirkung
- Bestimmung des Kernmagnetfeldes

Vielen Dank für Ihre Aufmerksamkeit.

Weiterführende Literatur

- SCHATZ, G.; WEIDINGER, A. Nukleare Festkörperphysik; Teubner, 1992
- GONSER, U.; Mößbauer Spectroscopy. Topics in Applied Physics; 1975