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1. Fundamentals
e Laser-induced plasmas
e Optical parametric amplification

Fundamentals
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e Plasma: "A quasineutral gas of charged and neutral particles which
eXhlbltS COlleCtiVe behaViOI‘" [Chen, Introduction to plasma physics and controlled fusion]

Fundamentals Laser-induced plasmas
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e Plasma: "A quasineutral gas of charged and neutral particles which
eXhlbltS COlleCtiVe behaViOI‘" [Chen, Introduction to plasma physics and controlled fusion]

@ classical ionization: photoelectric effect E = fiw > Ejop,
water: Ejon =10.1eV  vs. POLARIS: Ephoton = 1.2€V

Fundamentals Laser-induced plasmas
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e Plasma: "A quasineutral gas of charged and neutral particles which
eX.hlbltS COlleCtiVe behaViOI‘" [Chen, Introduction to plasma physics and controlled fusion]

@ classical ionization: photoelectric effect E = fiw > Ejop,
water: Ejon =10.1eV  vs. POLARIS: Ephoton = 1.2€V

e For higher intensities:
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(a) Multi-Photon Ionization (b) Tunnel Ionization (c) Over the Barrier Ionization

Fundamentals Laser-induced plasmas
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@ plasma frequency: w , critical density: n¢ =

Fundamentals Laser-induced plasmas



Friedrich-Schiller-Universitat

Plasma properties | * I0QUENA

w?egme
o2

2 =
P eome
= plasma is opaque for wavelengths above A = 27¢/w)

@ plasma frequency: w , critical density: n¢ =

@ Plasma expansion:

plasma scale length —¢ r ions sound speed

X . kB TeZ

Ne(X, 1) = Neg exp(——) with L=c¢s-t and c¢;= ¢

L m;

L plasma density at £ =0 A Ne(x, 1)
plasma
L
> X

Fundamentals Laser-induced plasmas
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(a)

Fig.: Process of Difference frequency generation (DFG).
(a) Geometry. conversion of the pump photon w, to ws and w; = wp — ws.

Fundamentals Optical parametric amplification
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(@) Wp =Ws+0; b)) E

Fig.: Process of Difference frequency generation (DFG).
(a) Geometry. conversion of the pump photon w, to ws and w; = wp — ws.
(b) Energy-level description.

Fundamentals Optical parametric amplification
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(@) Wp =Ws+0; b)) E
kp=ks+k;
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Fig.: Process of Difference frequency generation (DFG).
(a) Geometry. conversion of the pump photon w, to ws and w; = wp — ws.
(b) Energy-level description.

Fundamentals Optical parametric amplification
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2. Probing realtivistic laser-plasma interactions
e NOPA-based laser pulse generation
o Experimental setup
e Shadowgraphy of the plasma evolution

Probing realtivistic laser-plasma interactions
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o Pulse duration 7 < 130fs
= high temporal resolution

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation
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@ Pulse duration 7 < 130fs
= high temporal resolution

@ Wavelength A =800nm

= No overlap with fundamental (1030 nm) and SH (515 nm) of the
POLARIS laser

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation
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@ Pulse duration 7 < 130fs
= high temporal resolution

e Wavelength 1 =800nm
= No overlap with fundamental (1030 nm) and SH (515 nm) of the
POLARIS laser

@ Spectral bandwidth A1 > 100nm

= Support femtosecond pulse durations, enable spectrally resolved
probing options

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation
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@ Pulse duration 7 < 130fs
= high temporal resolution

e Wavelength 1 =800nm
= No overlap with fundamental (1030 nm) and SH (515 nm) of the
POLARIS laser

@ Spectral bandwidth A1 > 100nm
= Support femtosecond pulse durations, enable spectrally resolved
probing options

e Energy E > 10pJ
= proper illumination of the interaction region without target
ionization

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation
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Spectral measurement * 10QUENA
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Fig.: Measured averaged spectrum (for 60 consecutive shots) of the NOPA. The
standard deviation is indicated with the shaded area. Inset: Spatial profile of
the NOPA.

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation
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@ Suppression of the plasma emission and scattered laser light
= spectral filter (bandpass centered at 800 nm)
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@ Suppression of the plasma emission and scattered laser light

= spectral filter (bandpass centered at 800 nm)
= polarization filter
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@ Suppression of the plasma emission and scattered laser light
= spectral filter (bandpass centered at 800 nm)
= polarization filter
= spatial filter
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@ Suppression of the plasma emission and scattered laser light

= spectral filter (bandpass centered at 800 nm)
= polarization filter
= spatial filter

e resolution = microscope objective
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Probing realtivistic laser-plasma interactions Experimental setup
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PBrewst = 55.5° at 800 nm

Bandpass: 800 nm, 40 nm (FWHM)
Coronagraph

Experimental setup



Diagnostics setup ; V2 10QUENA

Friedrich-Schiller-Universitat

polarization filter

\

PBrewst = 55.5° at 800 nm

+— spectral filter

Bandpass: 800 nm, 40 nm (FWHM)
Coronagraph

r spatial filter

plasma interac 5 Experimental setup



./ 10QUENA

Friedrich-Schiller-Universitat

Probing realtivistic laser-plasma interactions Experimental setup
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7=3-20ps Vtront = (1.27 £0.06) um/ps,  Vrear = (0.77 £ 0.05) pm/ps
T=80-190ps Vgont = (0.09£0.03)pum/ps, Vrear = (0.22 £ 0.05) um/ps.
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7=3-20ps Vtront = (1.27 £0.06) um/ps,  Vrear = (0.77 £ 0.05) pm/ps
T=80-190ps Vgont = (0.09£0.03)pum/ps, Vrear = (0.22 £ 0.05) um/ps.

Table: Comparison of shadowgraphy plasma expansion experiments with targets
for different peak intensities.

experiment target intensity A Vtront

Becker! H,0 droplets 10'W/cm?  800nm  0.38pum/ps
This thesis H,O0 droplets 4-10'W/cm? 1030nm  1.3pm/ps
Bernertetal.? hydrogenjet 5-10°! W/cm?  800nm 23 um/ps

1 “Characterization of laser-driven proton acceleration with contrast-enhanced laser pulses”
2 “Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density
hydrogen jets”

Probing realtivistic laser-plasma interactions Shadowgraphy of the plasma evolution
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3. SPM-based laser pulse generation
e Self phase modulation (SPM)
e Single-pass SPM-based laser pulses
e Multi-pass SPM-based laser pulses
e Impact of pulse steepening

SPM-based laser pulse generation
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SPM-based laser pulse generation Self phase modulation (SPM)
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Change in the phase: ®ni.(t) = n2I(£) ko L.

SPM-based laser pulse generation Self phase modulation (SPM)
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Change in the phase: ®ni.(t) = n2I(£) ko L.
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SPM-based laser pulse generation Self phase modulation (SPM)
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Self phase modulation (SPM) Y 10QUENA
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Fig.: Simulated spectra of a laser pulse with 7 = 130fs (FWHM) propagating
through a 1 mm thick foil of CR-39 at different intensities.

SPM-based laser pulse generation Self phase modulation (SPM)
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@ Pulse duration 7 < 130fs
= high temporal resolution
e Wavelength 1 =800—1000 nm
= No overlap with fundamental (1030 nm) and SH (515 nm) of the
POLARIS laser
@ Spectral bandwidth A1 > 100nm
= Support femtosecond pulse durations
e Energy E>10p]
= proper illumination, no target ionization

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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SPM-based laser pulse generation Single-pass SPM-based laser pulses



Single-pass SPM ' * IOQJENA

CPA \ > }
130fs A

spectrometer
3:1 telescope
<4m] V ) 4
1030 nm /\ CR39 . /\ chirped mirrors
> =)
vV
—

£=300mm ND-filer  1:10
energy spectral broadening pulse duration T

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 m]J at
different intensities by varying the sample distance to the focus position. A
reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 m]J at
different intensities by varying the sample distance to the focus position. A
reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 m]J at
different intensities by varying the sample distance to the focus position. A
reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 m]J at
different intensities by varying the sample distance to the focus position. A
reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 m]J at
different intensities by varying the sample distance to the focus position. A
reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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SPM - energy measurement
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a
short-pass filter cutting at 1010 nm.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a
short-pass filter cutting at 1010 nm.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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SPM - energy measurement
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a
short-pass filter cutting at 1010 nm.

SPM-based laser pulse generation Single-pass SPM-based laser pulses
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Spectral measurement ‘ 10QUENA
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Fig.: Measured Spectra in two samples of 1.1 mm CR-39 placed in the Brewster
angle into a MPC oflength L = 10cm.

SPM-based laser pulse generation Multi-pass SPM-based laser pulses
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Spectral measurement ‘ 10QUENA
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Fig.: Measured Spectra in two samples of 1.1 mm CR-39 placed in the Brewster
angle into a MPC oflength L = 10cm.

SPM-based laser pulse generation Multi-pass SPM-based laser pulses
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Spectral measurement V2 10QUENA
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Fig.: Measured Spectra in two samples of 1.1 mm CR-39 placed in the Brewster
angle into a MPC oflength L = 10cm.

SPM-based laser pulse generation Multi-pass SPM-based laser pulses
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Fig.: Measured Spectra in two samples of 1.1 mm CR-39 placed in the Brewster
angle into a MPC oflength L = 10cm.

SPM-based laser pulse generation Multi-pass SPM-based laser pulses
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Fig.: Measured Spectra in two samples of 1.1 mm CR-39 placed in the Brewster
angle into a MPC oflength L = 10cm.

SPM-based laser pulse generation Multi-pass SPM-based laser pulses
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Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of

CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

SPM-based laser pulse generation Impact of pulse steepening
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Pulse steepening - tempbral domain 4,( I0QUENA
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Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of

CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

SPM-based laser pulse generation Impact of pulse steepening
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Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of

CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

SPM-based laser pulse generation Impact of pulse steepening
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Pulse steepening - tempbral domain 4,( I0QUENA
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Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of
CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

SPM-based laser pulse generation Impact of pulse steepening
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Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of
CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

SPM-based laser pulse generation Impact of pulse steepening
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Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.

SPM-based laser pulse generation Impact of pulse steepening
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Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.

SPM-based laser pulse generation Impact of pulse steepening
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Fig.: In a simplified model, the intensity distribution can be approximated as rings
of constant thickness. The corresponding intensity drops according to the
Gaussian distribution exponentially.
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Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39.
Right: Focal volume averaging for a transverse Gaussian intensity distribution.
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Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39.
Right: Focal volume averaging for a transverse Gaussian intensity distribution.
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Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39.
Right: Focal volume averaging for a transverse Gaussian intensity distribution.
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Summary

Probing of laser-microdroplet interaction

e characterization of the NOPA setup
@ development: imaging diagnostics + coronagraph

@ plasma evolution + plasma expansion velocity

Development of a new probe pulse laser source

e Single-pass SPM = 50 pulses
@ Multi-pass SPM = lower intensities

e Simulation: Pulse steepening + focal averaging

SPM-based laser pulse generation Impact of pulse steepening



Acknowledgements | . 10QUENA

Friedrich-Schiller-Universitat

A special thanks to my supervisors:
e Prof. Dr. Malte Kaluza

@ Dr. Yasmina Azamoum

I would also like to thank:
o Till Weickhardt
Mathis Nolte

Marco Hellwing

°
°

e Dr. Georg Becker

@ Dr. Marco Hornung
°

Dr. Matthew Schwab

Thank you for your attention.

SPM-based laser pulse generation Impact of pulse steepening



Friedrich-Schiller-Universitat

Phase matching for the NOPA 2 10QUENA
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Fig.: Left: Type-1 phase-matching angle 6 as a function of the signal wavelength A
for different pump-signal angles @ with a pump wavelength at 515 nm.
Right: Calculated gain spectra for a phase matching angle of 0 = 24.5° as a
function of signal wavelength A for different pump-signal angles a.
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Fig.: Left: Nonlinear phase (blue) for a pulse with 7 = 130fs (FWHM) of peak

intensity Iy = 4TW/cm? for 1 mm of CR-39. The instantaneous frequency
change Aw = — 6<‘I;1;1L is shown in orange. Right: Calculated phase difference as

a function of instantaneous frequency change.
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Fig.: Stability measurement of the amplifier and NOPA energy over a duration of
several minutes.
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Spectral control of the NOPA 10QUENA
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Fig.: Left: Geometry of the WLC (signal) and SH (pump) beams in the NOPA crystal
(Type I 0-0-e phase matching process). Right: NOPA spectra for different
non-collinear angles a. The orange curve indicates that the spectral
bandwidth can be reduced by an adjustment of the non-collinear angle and
subsequent optimization of the temporal delay 7.
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CPA system for probing
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Fig.: Measured spectrum of the Amplifier. The graph shows the averaged spectrum
for 80 consecutive shots. The standard deviation is indicated with the shaded
area. The central wavelength Ay = 1032.8nm, and width AA = 14.1nm
(FWHM) were determined using a Gaussian fit (orange). Inset: spatial profile
of the amplified pulse. The beam radius was determined to be
w = (0.77 £0.02) mm (1/e?).
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CPA system - autocorrelatlon measurement A.(
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Fig.: Measured pulse length at the compressor output before (blue) and after
(orange) the realignment of the stretcher. The autocorrelation function was
measured by TOPAG ASF-15 single shot autocorrelator. The desaturated
curves show a Gaussian fit to the measured data used to determine the pulse
length.
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f mask 2 12 camera

Two different designs for a coronagraph imaging setup. Top: The droplets are
magnified and imaged to the position of the coronagraph mask using an
aberration corrected microscope objective M) and a tube lens (f1) placed in a
distance L, to the objective. The droplet with the blocked center is then
re-imaged into a camera with another combination of objective and lens f>
placed in a distance L,. Bottom: The second imaging of the droplet into the
camera is done by a single lens with a magnification of 1.
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Placement - Objective and Field lens
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Fig.: Supplemental drawing for the placement of objective and tube lens. The
maximum distance L for a desired image field D can be derived geometrically
from the tube lens diameter d; and objective aperture dy;. The required field
of view with a size of 300um is shown on the left.
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Self-focusing distance z:

Zof = 0 (2) ! ith P = % =1.42MW t g = 1030nm
= wi it = =1. a = )
sf /10 ,—P/Pcr i crit 870712 0

Table: Self focusing distance zg and pulse width w for different pulse energies
(t = 130fs) calculated at a constant peak intensity I = 10TW/ cm?.

Energy [m]] 0.1 0.5 1 2 5

pulse radius wy [um] 48 107 152 214 339
self-focusing distance z [mm] 0.30 0.66 0.94 132 2.09
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SPM - pulse compression 'OQJENA
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Fig.: Top: Spectra of a reference pulse (blue) and for for pulses experiencing SPM

in CR-39 (orange) recorded simultaneously with an autocorrelation
measurement. Bottom: Measured Autocorrelation functions.
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SPM - vacuum setup 2 I0QUENA
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SPM - vacuum setup ‘ I0QUENA
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SPM - vacuum setup ‘ I0QUENA
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SPM - spectral measurement in vacuum 10QUENA
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f =400mm).
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SPM - spectral measurement in vacuum 10QUENA
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f =400mm).
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SPM - spectral measurement in vacuum 10QUENA
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f =400mm).
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SPM - spectral measurement in vacuum 10QUENA
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f =400mm).
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SPM - spectral measurement in vacuum 10QUENA
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f =400mm).
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SPM - Pulse steepening ‘ ~y” 10QUENA
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Wave equation of a plane wave in a nonlinear, inversion symmetric
medium with slowly varying envelope approximation
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(6z2 20t | ey ot wi 250X IE|

Without slowly varying envelope approximation: (E(t) = &el(k#=©0)
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Further simplification and splitting of amplitude |&| and phase ® yields
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