

FRIEDRICH-SCHILLER-UNIVERSITÄT **JENA**

Development of Laser Sources and Diagnostics for Probing Relativistic Laser-Matter Interaction Master thesis

Martin Beyer

supervisors: Prof. Dr. Malte Kaluza Dr. Yasmina Azamoum

December 9th, 2022

1. [Fundamentals](#page-8-0)

- [Laser-induced plasmas](#page-9-0)
- [Optical parametric amplification](#page-15-0)
- 2. [Probing realtivistic laser-plasma interactions](#page-18-0)
- 3. [SPM-based laser pulse generation](#page-43-0)

Plasma: "A quasineutral gas of charged and neutral particles which exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]

- Plasma: "A quasineutral gas of charged and neutral particles which exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]
- classical ionization: photoelectric effect $E = \hbar \omega > E_{\text{ion}}$, water: $E_{ion} = 10.1 \text{ eV}$ vs. POLARIS: $E_{photon} = 1.2 \text{ eV}$

- Plasma: "A quasineutral gas of charged and neutral particles which exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]
- classical ionization: photoelectric effect $E = \hbar \omega > E_{\text{ion}}$, water: $E_{ion} = 10.1 \text{ eV}$ vs. POLARIS: $E_{photon} = 1.2 \text{ eV}$
- For higher intensities:

(a) Multi-Photon Ionization (b) Tunnel Ionization (c) Over the Barrier Ionization

Plasma properties

• plasma frequency:
$$
\omega_p^2 = \frac{n_e e^2}{\epsilon_0 m_e}
$$
,

Plasma properties

• plasma frequency:
$$
\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}
$$
, critical density: $n_{\text{cr}} = \frac{\omega^2 \varepsilon_0 m_e}{e^2}$
\n \Rightarrow plasma is opaque for wavelengths above $\lambda = 2\pi c/\omega_p$

Plasma properties

\n- plasma frequency:
$$
\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}
$$
, critical density: $n_{cr} = \frac{\omega^2 \varepsilon_0 m_e}{e^2}$
\n- plasma is opaque for wavelengths above $\lambda = 2\pi c/\omega_p$
\n- Plasma expansion:
\n

plasma scale length
\n
$$
n_e(x, t) = n_{e0} \exp\left(-\frac{x}{L}\right) \text{ with } L = c_s \cdot t \text{ and } c_s = \sqrt{\frac{k_B T_e Z}{m_i}}
$$
\nplasma density at $t = 0$
\nplasma

NOPA (Non-collinear optical parametric amplification)

Fig.: Process of Difference frequency generation (DFG).

(a) Geometry. conversion of the pump photon ω_p to ω_s and $\omega_i = \omega_p - \omega_s$.

NOPA (Non-collinear optical parametric amplification)

Fig.: Process of Difference frequency generation (DFG).

- (a) Geometry. conversion of the pump photon ω_p to ω_s and $\omega_i = \omega_p \omega_s$.
- (b) Energy-level description.

NOPA (Non-collinear optical parametric amplification)

Fig.: Process of Difference frequency generation (DFG).

- (a) Geometry. conversion of the pump photon ω_p to ω_s and $\omega_i = \omega_p \omega_s$.
- (b) Energy-level description.

1. [Fundamentals](#page-8-0)

2. [Probing realtivistic laser-plasma interactions](#page-18-0)

- [NOPA-based laser pulse generation](#page-19-0)
- [Experimental setup](#page-26-0)
- [Shadowgraphy of the plasma evolution](#page-38-0)

3. [SPM-based laser pulse generation](#page-43-0)

Pulse duration *τ* < 130fs ⇒ high temporal resolution

Specifications of a probe pulse laser

- **Pulse duration** *τ* < 130fs
	- \Rightarrow high temporal resolution
- Wavelength $\lambda = 800 \text{ nm}$

 \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser

Specifications of a probe pulse laser

- **Pulse duration** *τ* < 130fs
	- \Rightarrow high temporal resolution
- Wavelength $\lambda = 800 \text{ nm}$

 \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser

Spectral bandwidth ∆*λ* > 100nm

⇒ Support femtosecond pulse durations, enable spectrally resolved probing options

Specifications of a probe pulse laser

- **Pulse duration** *τ* < 130fs
	- \Rightarrow high temporal resolution
- Wavelength $\lambda = 800 \text{ nm}$

 \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser

Spectral bandwidth ∆*λ* > 100nm

⇒ Support femtosecond pulse durations, enable spectrally resolved probing options

• Energy $E > 10 \mu$ J

 \Rightarrow proper illumination of the interaction region without target ionization

NOPA setup

NOPA setup

Spectral measurement

Fig.: Measured averaged spectrum (for 60 consecutive shots) of the NOPA. The standard deviation is indicated with the shaded area. Inset: Spatial profile of the NOPA.

- **Suppression of the plasma emission and scattered laser light**
	- ⇒ spectral filter (bandpass centered at 800 nm)

Suppression of the plasma emission and scattered laser light

- \Rightarrow spectral filter (bandpass centered at 800 nm)
- \Rightarrow polarization filter

Suppression of the plasma emission and scattered laser light

- ⇒ spectral filter (bandpass centered at 800 nm)
- \Rightarrow polarization filter
- \Rightarrow spatial filter

Suppression of the plasma emission and scattered laser light

- ⇒ spectral filter (bandpass centered at 800 nm)
- \Rightarrow polarization filter
- \Rightarrow spatial filter
- **resolution** ⇒ microscope objective

Experimental setup

Diagnostics setup

Diagnostics setup

Spatial filter - Coronagraph

Coronagraph - Experimental results

Coronagraph - Experimental results

[Probing realtivistic laser-plasma interactions](#page-18-0) [Experimental setup](#page-26-0) 16 / 16 / 49
Shadowgraphy of the plasma evolution

Shadowgraphy of the plasma evolution

Estimation of plasma expansion velocity

Estimation of plasma expansion velocity

Estimation of plasma expansion velocity

 $\tau = 3-20 \text{ ps}$ $v_{\text{front}} = (1.27 \pm 0.06) \mu \text{m}/\text{ps}$, $v_{\text{rear}} = (0.77 \pm 0.05) \mu \text{m}/\text{ps}$ $\tau = 80 - 190 \text{ ps}$ $v_{\text{front}} = (0.09 \pm 0.03) \mu \text{m/ps}$, $v_{\text{rear}} = (0.22 \pm 0.05) \mu \text{m/ps}$.

 $\tau = 3-20 \text{ ps}$ *v*_{front} = (1.27 ± 0.06) μ m/ps, $v_{\text{rear}} = (0.77 \pm 0.05) \mu$ m/ps

 $\tau = 80 - 190 \text{ ps}$ *v*_{front} = (0.09 ± 0.03) μ m/ps, *v*_{rear} = (0.22 ± 0.05) μ m/ps.

Table: Comparison of shadowgraphy plasma expansion experiments with targets for different peak intensities.

¹ "Characterization of laser-driven proton acceleration with contrast-enhanced laser pulses" ² "Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets"

1. [Fundamentals](#page-8-0)

2. [Probing realtivistic laser-plasma interactions](#page-18-0)

3. [SPM-based laser pulse generation](#page-43-0)

- [Self phase modulation \(SPM\)](#page-44-0)
- [Single-pass SPM-based laser pulses](#page-49-0)
- [Multi-pass SPM-based laser pulses](#page-60-0)
- [Impact of pulse steepening](#page-66-0)

Self phase modulation (SPM)

Optical Kerr effect (intensity dependent refractive index)

$$
n(t) = n_0 + n_2 I(t)
$$
, where $n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 n_0^2 c}$.

 \sim

Optical Kerr effect (intensity dependent refractive index)

$$
n(t) = n_0 + n_2 I(t)
$$
, where $n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 n_0^2 c}$.

Change in the phase: $\Phi_{\text{NL}}(t) = n_2 I(t) k_0 L$.

 \sim

Optical Kerr effect (intensity dependent refractive index)

$$
n(t) = n_0 + n_2 I(t)
$$
, where $n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 n_0^2 c}$.

Change in the phase: $\Phi_{\text{NL}}(t) = n_2 I(t) k_0 L$.

 \sim

Optical Kerr effect (intensity dependent refractive index)

$$
n(t) = n_0 + n_2 I(t)
$$
, where $n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 n_0^2 c}$.

Change in the phase: $\Phi_{\text{NL}}(t) = n_2 I(t) k_0 L$.

Self phase modulation (SPM)

Fig.: Simulated spectra of a laser pulse with *τ* = 130fs (FWHM) propagating through a 1 mm thick foil of CR-39 at different intensities.

Specifications of a probe pulse laser

- **Pulse duration** *τ* < 130fs \Rightarrow high temporal resolution
- **Wavelength** *λ* =800−1000 nm \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser
- **Spectral bandwidth** ∆*λ* > 100nm ⇒ Support femtosecond pulse durations
- **Energy** $E > 10 \mu$ J
	- ⇒ proper illumination, no target ionization

Single-pass SPM

Single-pass SPM

energy spectral broadening

pulse duration *τ*

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

iOO

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

iOQ

IFNA

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

10

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM - energy measurement

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a short-pass filter cutting at 1010 nm.

SPM - energy measurement

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a short-pass filter cutting at 1010 nm.

SPM - energy measurement

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a short-pass filter cutting at 1010 nm.

Multi-pass cell

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

IFNA

i0Q

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

ioQ JENA

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

ioQ JENA

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.

Pulse steepening - spectral domain

Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.
Pulse steepening - spectral domain

Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.

Focal volume averaging

Fig.: In a simplified model, the intensity distribution can be approximated as rings of constant thickness. The corresponding intensity drops according to the Gaussian distribution exponentially.

Focal volume averaging - simulation

Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39. Right: Focal volume averaging for a transverse Gaussian intensity distribution.

Focal volume averaging - simulation

Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39. Right: Focal volume averaging for a transverse Gaussian intensity distribution.

Focal volume averaging - simulation

Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39. Right: Focal volume averaging for a transverse Gaussian intensity distribution.

Probing of laser-microdroplet interaction

- characterization of the NOPA setup
- development: imaging diagnostics + coronagraph
- plasma evolution + plasma expansion velocity

Development of a new probe pulse laser source

- Single-pass SPM \Rightarrow 50 μ J pulses
- Multi-pass $SPM \Rightarrow$ lower intensities
- Simulation: Pulse steepening + focal averaging

Acknowledgements

A special thanks to my supervisors:

- Prof. Dr. Malte Kaluza
- Dr. Yasmina Azamoum

I would also like to thank:

- Till Weickhardt
- **•** Mathis Nolte
- Marco Hellwing
- Dr. Georg Becker
- Dr. Marco Hornung
- **Dr. Matthew Schwab**

Thank you for your attention.

Phase matching for the NOPA

Fig.: Left: Type-1 phase-matching angle *θ* as a function of the signal wavelength *λ^s* for different pump-signal angles α with a pump wavelength at 515 nm. Right: Calculated gain spectra for a phase matching angle of *θ* = 24.5◦ as a function of signal wavelength *λ^s* for different pump-signal angles *α*.

Temporal description of SPM

Fig.: Left: Nonlinear phase (blue) for a pulse with *τ* = 130fs (FWHM) of peak intensity $I_0 = 4 \text{ TW/cm}^2$ for 1 mm of CR-39. The instantaneous frequency change $\Delta \omega = -\frac{\partial \Phi_{NL}}{\partial t}$ is shown in orange. Right: Calculated phase difference as a function of instantaneous frequency change.

Fig.: Stability measurement of the amplifier and NOPA energy over a duration of several minutes.

[Appendix](#page-79-0) **Appendix 27 / 49** \rightarrow 37 / 49

Spectral control of the NOPA

Fig.: Left: Geometry of the WLC (signal) and SH (pump) beams in the NOPA crystal (Type I o-o-e phase matching process). Right: NOPA spectra for different non-collinear angles α . The orange curve indicates that the spectral bandwidth can be reduced by an adjustment of the non-collinear angle and subsequent optimization of the temporal delay *τ*.

CPA system for probing

CPA system - spectral measurement

Fig.: Measured spectrum of the Amplifier. The graph shows the averaged spectrum for 80 consecutive shots. The standard deviation is indicated with the shaded area. The central wavelength $\lambda_0 = 1032.8$ nm, and width $\Delta \lambda = 14.1$ nm (FWHM) were determined using a Gaussian fit (orange). Inset: spatial profile of the amplified pulse. The beam radius was determined to be $w = (0.77 \pm 0.02)$ mm (1/e²).

iOO

Fig.: Measured pulse length at the compressor output before (blue) and after (orange) the realignment of the stretcher. The autocorrelation function was measured by TOPAG ASF-15 single shot autocorrelator. The desaturated curves show a Gaussian fit to the measured data used to determine the pulse length.

iOQ

Probing Imaging system

Fig.: Two different designs for a coronagraph imaging setup. Top: The droplets are magnified and imaged to the position of the coronagraph mask using an aberration corrected microscope objective M_1 and a tube lens (f_1) placed in a distance L_1 to the objective. The droplet with the blocked center is then re-imaged into a camera with another combination of objective and lens f_2 placed in a distance *L*2. Bottom: The second imaging of the droplet into the camera is done by a single lens with a magnification of 1.

Placement - Objective and Field lens

Fig.: Supplemental drawing for the placement of objective and tube lens. The maximum distance *L* for a desired image field *D* can be derived geometrically from the tube lens diameter d_1 and objective aperture d_M . The required field of view with a size of 300µm is shown on the left.

i00

Self-focusing distance z_{sf} :

$$
z_{\rm sf} = \frac{2n_0w_0^2}{\lambda_0} \frac{1}{\sqrt{P/P_{\rm cr}-1}} \quad \text{with} \quad P_{\rm crit} \approx \frac{\lambda_0^2}{8n_0n_2} = 1.42 \,\text{MW} \quad \text{at } \lambda_0 = 1030 \,\text{nm},
$$

Table: Self focusing distance z_{sf} and pulse width w_0 for different pulse energies $(\tau = 130 \text{ fs})$ calculated at a constant peak intensity $I = 10 \text{ TW/cm}^2$.

SPM - pulse compression

Fig.: Top: Spectra of a reference pulse (blue) and for for pulses experiencing SPM in CR-39 (orange) recorded simultaneously with an autocorrelation measurement. Bottom: Measured Autocorrelation functions.

SPM - vacuum setup

SPM - vacuum setup

iOQJENA Friedrich-Schiller-Universität

SPM - vacuum setup

iOQJENA Friedrich-Schiller-Universität

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens $f = 400$ mm).

iOO

NΔ

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens $f = 400$ mm).

iOO

IFNA

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens $f = 400$ mm).

iOO

IFNA

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens $f = 400$ mm).

iOO

IFNA

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens $f = 400$ mm).

iOO

Multi-pass cell

Multi-pass cell

Multi-pass cell

SPM - Pulse steepening

Wave equation of a plane wave in a nonlinear, inversion symmetric medium with slowly varying envelope approximation

$$
\left(\frac{\partial^2}{\partial z^2} - \frac{n_0^2}{c^2} \frac{\partial^2}{\partial t^2}\right) \boldsymbol{E} = \frac{1}{c^2 \varepsilon_0} \frac{\partial^2}{\partial t^2} \boldsymbol{P}^{(3)} \text{ with } \boldsymbol{P}^{(3)} = \frac{3}{4} \varepsilon_0 \chi^{(3)} |\boldsymbol{E}|^2 \boldsymbol{E}.
$$

Without slowly varying envelope approximation: $(E(t) = \mathcal{E}e^{i(kz - \omega t)})$

$$
\bigg(\frac{\partial}{\partial z}+\frac{n_0}{c}\frac{\partial}{\partial t}\bigg)\mathscr{E}+\frac{1}{2\mathrm{i} k}\bigg(\frac{\partial^2}{\partial z^2}-\frac{n_0^2}{c^2}\frac{\partial^2}{\partial t^2}\bigg)\mathscr{E}=\frac{1}{2\mathrm{i} k}\frac{3\omega_0^2}{4c^2}\bigg(\frac{1}{\omega_0^2}\frac{\partial^2}{\partial t^2}-\frac{2\mathrm{i}}{\omega_0}\frac{\partial}{\partial t}-1\bigg)\chi^{(3)}|\mathscr{E}|^2\mathscr{E}.
$$

Further simplification and splitting of amplitude $|\mathscr{E}|$ and phase Φ yields

$$
\left[\frac{\partial}{\partial z} + \frac{n_0}{c} \left(1 + \frac{3\tilde{n}_2}{n_0} |\mathcal{E}|^2 \right) \frac{\partial}{\partial t} \right] |\mathcal{E}| = 0,
$$

$$
\left[\frac{\partial}{\partial z} + \frac{n_0}{c} \left(1 + \frac{\tilde{n}_2}{n_0} |\mathcal{E}|^2 \right) \frac{\partial}{\partial t} \right] \Phi = \frac{\tilde{n}_2 \omega_0}{c} |\mathcal{E}|^2.
$$