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Outline

1. Fundamentals
Laser-induced plasmas
Optical parametric amplification

2. Probing realtivistic laser-plasma interactions

3. SPM-based laser pulse generation
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Laser-induced plasmas

Plasma: "A quasineutral gas of charged and neutral particles which
exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]

classical ionization: photoelectric effect E =ħω> Eion,
water: Eion = 10.1eV vs. POLARIS: Ephoton = 1.2eV

For higher intensities:
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(a) Multi-Photon Ionization (b) Tunnel Ionization (c) Over the Barrier Ionization
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Plasma properties

plasma frequency: ω2
p = ne e2

ε0me
,

critical density: ncr =
ω2ε0me

e2

⇒ plasma is opaque for wavelengths above λ= 2πc/ωp

Plasma expansion:

ne (x, t ) = ne0 exp
(
−x

L

)
with L = cs · t and cs =

√
kB Te Z

mi

plasma density at t = 0

ions sound speedplasma scale length
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NOPA (Non-collinear optical parametric amplification)

(a) (b)
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Fig.: Process of Difference frequency generation (DFG).
(a) Geometry. conversion of the pump photon ωp to ωs and ωi =ωp −ωs .

(b) Energy-level description.
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Outline

1. Fundamentals

2. Probing realtivistic laser-plasma interactions
NOPA-based laser pulse generation
Experimental setup
Shadowgraphy of the plasma evolution

3. SPM-based laser pulse generation
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Specifications of a probe pulse laser

Pulse duration τ< 130fs
⇒ high temporal resolution

Wavelength λ= 800nm
⇒ No overlap with fundamental (1030 nm) and SH (515 nm) of the
POLARIS laser

Spectral bandwidth ∆λ> 100nm
⇒ Support femtosecond pulse durations, enable spectrally resolved
probing options

Energy E > 10µJ
⇒ proper illumination of the interaction region without target
ionization
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NOPA setup

α

SHG cam
NOPA cam

20µJ

alignment cams

cam 2

cam 1

energy measure-
ment head

spectrometer

image plane

NBS

0.8 mJ2µJ

Out

1.5 mJ

white light generation

AIOAP YAG
VND

1.5 mJ

chirped mirrors

delay 400 mm

-200
mm

WLCsignal

1.5 mJ

pump

Second harmonic generation

White light continuum

SHG

CPA

BBO

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation 10 / 49



NOPA setup

α

SHG cam

NOPA cam

20µJ

alignment cams

cam 2

cam 1

energy measure-
ment head

spectrometer

image plane

NBS

0.8 mJ2µJ

Out

1.5 mJ

white light generation

AIOAP YAG
VND

1.5 mJ

chirped mirrors

delay 400 mm

-200
mm

WLCsignal

1.5 mJ

pump

Second harmonic generation

White light continuum

SHG

CPA

BBO

Probing realtivistic laser-plasma interactions NOPA-based laser pulse generation 10 / 49



Spectral measurement
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Fig.: Measured averaged spectrum (for 60 consecutive shots) of the NOPA. The
standard deviation is indicated with the shaded area. Inset: Spatial profile of
the NOPA.
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Specifications for the probing diagnostics

Suppression of the plasma emission and scattered laser light
⇒ spectral filter (bandpass centered at 800 nm)

⇒ polarization filter
⇒ spatial filter

resolution ⇒ microscope objective
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Experimental setup
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Diagnostics setup
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Spatial filter - Coronagraph
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Coronagraph - Experimental results

August, 30thAugust, 30th

pump

50

100

150

y
in

µ
m

2.0 ps probe 12.0 ps probe 1

August, 30thAugust, 30th

2.0 ps probe 12.0 ps probe 1

August, 19thAugust, 19th

∼59 ps probe 1∼59 ps probe 1

August, 30thAugust, 30th

50 100 150

50

100

150

x in µm

y
in

µ
m

2.0 ps probe 22.0 ps probe 2

August, 30thAugust, 30th

50 100 150

x in µm

2.0 ps probe 22.0 ps probe 2

August, 19thAugust, 19th

50 100 150

x in µm

∼59 ps probe 2∼59 ps probe 2

Probing realtivistic laser-plasma interactions Experimental setup 16 / 49



Coronagraph - Experimental results

August, 30thAugust, 30th

pump

50

100

150

y
in

µ
m

2.0 ps probe 12.0 ps probe 1

August, 30thAugust, 30th

2.0 ps probe 12.0 ps probe 1

August, 19thAugust, 19th

∼59 ps probe 1∼59 ps probe 1

August, 30thAugust, 30th

50 100 150

50

100

150

x in µm

y
in

µ
m

2.0 ps probe 22.0 ps probe 2

August, 30thAugust, 30th

50 100 150

x in µm

2.0 ps probe 22.0 ps probe 2

August, 19thAugust, 19th

50 100 150

x in µm

∼59 ps probe 2∼59 ps probe 2

Probing realtivistic laser-plasma interactions Experimental setup 16 / 49



Shadowgraphy of the plasma evolution
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Shadowgraphy of the plasma evolution
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Estimation of plasma expansion velocity
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Table: Comparison of shadowgraphy plasma expansion experiments with targets
for different peak intensities.

experiment target intensity λ vfront

Becker1 H2O droplets 1016 W/cm2 800 nm 0.38µm/ps
This thesis H2O droplets 4 ·1019 W/cm2 1030 nm 1.3µm/ps
Bernert et al.2 hydrogen jet 5 ·1021 W/cm2 800 nm 23µm/ps

1 “Characterization of laser-driven proton acceleration with contrast-enhanced laser pulses”
2 “Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density
hydrogen jets”
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Estimation of plasma expansion velocity

τ = 3−20 ps vfront = (1.27±0.06)µm/ps, vrear = (0.77±0.05)µm/ps

τ = 80−190 ps vfront = (0.09±0.03)µm/ps, vrear = (0.22±0.05)µm/ps.
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Outline

1. Fundamentals

2. Probing realtivistic laser-plasma interactions

3. SPM-based laser pulse generation
Self phase modulation (SPM)
Single-pass SPM-based laser pulses
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Self phase modulation (SPM)

Optical Kerr effect (intensity dependent refractive index)

n(t ) = n0 +n2I (t ), where n2 =
3χ(3)

4ε0n2
0c

.

Change in the phase: ΦNL(t ) = n2I (t )k0L.

t

E(t )e−iω0t

t

E(t )e−(iω0t+ΦNL)
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Self phase modulation (SPM)
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Fig.: Simulated spectra of a laser pulse with τ= 130fs (FWHM) propagating
through a 1 mm thick foil of CR-39 at different intensities.
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Specifications of a probe pulse laser

Pulse duration τ< 130fs
⇒ high temporal resolution

Wavelength λ=800−1000 nm
⇒ No overlap with fundamental (1030 nm) and SH (515 nm) of the
POLARIS laser

Spectral bandwidth ∆λ> 100nm
⇒ Support femtosecond pulse durations

Energy E > 10µJ
⇒ proper illumination, no target ionization
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Single-pass SPM
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SPM - spectral measurement
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Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at
different intensities by varying the sample distance to the focus position. A
reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.
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SPM - energy measurement
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a
short-pass filter cutting at 1010 nm.
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Spectral measurement
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Fig.: Measured Spectra in two samples of 1.1 mm CR-39 placed in the Brewster
angle into a MPC of length L = 10cm.
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Pulse steepening - temporal domain

−300 −200 −100 0 100 200 300

0

0.5

1

time t in fs

n
o

rm
al

iz
ed

in
te

n
si

ty

0.1 TW/cm2

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of
CR-39 with an initial pulse length of 130fs (FWHM) for different intensities.
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Pulse steepening - spectral domain
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Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.
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Focal volume averaging
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Fig.: In a simplified model, the intensity distribution can be approximated as rings
of constant thickness. The corresponding intensity drops according to the
Gaussian distribution exponentially.
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Focal volume averaging - simulation
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Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39.
Right: Focal volume averaging for a transverse Gaussian intensity distribution.
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Summary

Probing of laser-microdroplet interaction

characterization of the NOPA setup

development: imaging diagnostics + coronagraph

plasma evolution + plasma expansion velocity

Development of a new probe pulse laser source

Single-pass SPM ⇒ 50µJ pulses

Multi-pass SPM ⇒ lower intensities

Simulation: Pulse steepening + focal averaging
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Phase matching for the NOPA
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Fig.: Left: Type-1 phase-matching angle θ as a function of the signal wavelength λs

for different pump-signal angles α with a pump wavelength at 515 nm.
Right: Calculated gain spectra for a phase matching angle of θ = 24.5◦ as a
function of signal wavelength λs for different pump-signal angles α.
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Temporal description of SPM
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Fig.: Left: Nonlinear phase (blue) for a pulse with τ= 130fs (FWHM) of peak
intensity I0 = 4TW/cm2 for 1 mm of CR-39. The instantaneous frequency

change ∆ω=− ∂ΦNL
∂t is shown in orange. Right: Calculated phase difference as

a function of instantaneous frequency change.
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Stability measurement of Amplifier and NOPA
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Fig.: Stability measurement of the amplifier and NOPA energy over a duration of
several minutes.
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Spectral control of the NOPA
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Fig.: Left: Geometry of the WLC (signal) and SH (pump) beams in the NOPA crystal
(Type I o-o-e phase matching process). Right: NOPA spectra for different
non-collinear angles α. The orange curve indicates that the spectral
bandwidth can be reduced by an adjustment of the non-collinear angle and
subsequent optimization of the temporal delay τ.
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CPA system for probing
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CPA system - spectral measurement
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Fig.: Measured spectrum of the Amplifier. The graph shows the averaged spectrum
for 80 consecutive shots. The standard deviation is indicated with the shaded
area. The central wavelength λ0 = 1032.8nm, and width ∆λ= 14.1nm
(FWHM) were determined using a Gaussian fit (orange). Inset: spatial profile
of the amplified pulse. The beam radius was determined to be
w = (0.77±0.02)mm (1/e2).
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CPA system - autocorrelation measurement
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Fig.: Measured pulse length at the compressor output before (blue) and after
(orange) the realignment of the stretcher. The autocorrelation function was
measured by TOPAG ASF-15 single shot autocorrelator. The desaturated
curves show a Gaussian fit to the measured data used to determine the pulse
length.
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Probing Imaging system
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Fig.: Two different designs for a coronagraph imaging setup. Top: The droplets are
magnified and imaged to the position of the coronagraph mask using an
aberration corrected microscope objective M1 and a tube lens ( f1) placed in a
distance L1 to the objective. The droplet with the blocked center is then
re-imaged into a camera with another combination of objective and lens f2

placed in a distance L2. Bottom: The second imaging of the droplet into the
camera is done by a single lens with a magnification of 1.
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Placement - Objective and Field lens
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Fig.: Supplemental drawing for the placement of objective and tube lens. The
maximum distance L for a desired image field D can be derived geometrically
from the tube lens diameter d1 and objective aperture dM . The required field
of view with a size of 300µm is shown on the left.
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Self focusing considerations

Self-focusing distance zsf:

zsf =
2n0w2

0

λ0

1p
P/Pcr −1

with Pcrit ≈
λ2

0

8n0n2
= 1.42MW at λ0 = 1030nm,

Table: Self focusing distance zsf and pulse width w0 for different pulse energies
(τ= 130fs) calculated at a constant peak intensity I = 10TW/cm2.

Energy [mJ] 0.1 0.5 1 2 5

pulse radius w0 [µm] 48 107 152 214 339
self-focusing distance zsf [mm] 0.30 0.66 0.94 1.32 2.09
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SPM - pulse compression
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Fig.: Top: Spectra of a reference pulse (blue) and for for pulses experiencing SPM
in CR-39 (orange) recorded simultaneously with an autocorrelation
measurement. Bottom: Measured Autocorrelation functions.
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SPM - vacuum setup
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SPM - vacuum setup
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SPM - vacuum setup
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SPM - spectral measurement in vacuum
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f = 400mm).
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SPM - spectral measurement in vacuum
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f = 400mm).
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f = 400mm).
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SPM - spectral measurement in vacuum
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Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different
pulse energies were used at a constant distance (2 cm) to the laser focus
(focusing lens f = 400mm).
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Multi-pass cell
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SPM - Pulse steepening

Wave equation of a plane wave in a nonlinear, inversion symmetric
medium with slowly varying envelope approximation

(
∂2

∂z2 − n2
0

c2

∂2

∂t 2

)
E = 1

c2ε0

∂2

∂t 2 P (3) with P (3) = 3

4
ε0χ

(3)|E |2E .

Without slowly varying envelope approximation: (E (t ) = E ei(kz−ωt ))

(
∂

∂z
+ n0

c

∂

∂t

)
E + 1

2ik

(
∂2

∂z2 − n2
0

c2

∂2

∂t 2

)
E = 1

2ik

3ω2
0

4c2

(
1

ω2
0

∂2

∂t 2 − 2i

ω0

∂

∂t
−1

)
χ(3)|E |2E .

Further simplification and splitting of amplitude |E | and phaseΦ yields

[
∂

∂z
+ n0

c

(
1+ 3ñ2

n0
|E |2

)
∂

∂t

]
|E | = 0,

[
∂

∂z
+ n0

c

(
1+ ñ2

n0
|E |2

)
∂

∂t

]
Φ = ñ2ω0

c
|E |2.
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