

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Development of Laser Sources and Diagnostics for Probing Relativistic Laser-Matter Interaction Master thesis

Martin Beyer

supervisors:

Prof. Dr. Malte Kaluza Dr. Yasmina Azamoum

December 9th, 2022

1. Fundamentals

- Laser-induced plasmas
- Optical parametric amplification

2. Probing realtivistic laser-plasma interactions

3. SPM-based laser pulse generation

• Plasma: "A quasineutral gas of charged and neutral particles which exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]

- Plasma: "A quasineutral gas of charged and neutral particles which exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]
- classical ionization: photoelectric effect $E = \hbar \omega > E_{ion}$, water: $E_{ion} = 10.1 \text{ eV}$ vs. POLARIS: $E_{photon} = 1.2 \text{ eV}$

- Plasma: "A quasineutral gas of charged and neutral particles which exhibits collective behavior" [Chen, Introduction to plasma physics and controlled fusion]
- classical ionization: photoelectric effect $E = \hbar \omega > E_{ion}$, water: $E_{ion} = 10.1 \text{ eV}$ vs. POLARIS: $E_{photon} = 1.2 \text{ eV}$
- For higher intensities:

(a) Multi-Photon Ionization

(b) Tunnel Ionization

(c) Over the Barrier Ionization

Plasma properties

• plasma frequency:
$$\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$$
,

Plasma properties

• plasma frequency:
$$\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$$
, critical density: $n_{cr} = \frac{\omega^2 \varepsilon_0 m_e}{e^2}$
 \Rightarrow plasma is opaque for wavelengths above $\lambda = 2\pi c/\omega_p$

Plasma properties

• plasma frequency:
$$\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$$
, critical density: $n_{cr} = \frac{\omega^2 \varepsilon_0 m_e}{e^2}$
 \Rightarrow plasma is opaque for wavelengths above $\lambda = 2\pi c/\omega_p$
• Plasma expansion:
plasma scale length integration ions sound speed
 $n_e(x, t) = n_{e0} \exp\left(-\frac{x}{L}\right)$ with $L = c_s \cdot t$ and $c_s = \sqrt{\frac{k_B T_e Z}{m_i}}$
plasma density at $t = 0$
plasma

х

NOPA (Non-collinear optical parametric amplification)

Fig.: Process of Difference frequency generation (DFG).

(a) Geometry. conversion of the pump photon ω_p to ω_s and $\omega_i = \omega_p - \omega_s$.

NOPA (Non-collinear optical parametric amplification)

Fig.: Process of Difference frequency generation (DFG).

- (a) Geometry. conversion of the pump photon ω_p to ω_s and $\omega_i = \omega_p \omega_s$.
- (b) Energy-level description.

NOPA (Non-collinear optical parametric amplification)

Fig.: Process of Difference frequency generation (DFG).

- (a) Geometry. conversion of the pump photon ω_p to ω_s and $\omega_i = \omega_p \omega_s$.
- (b) Energy-level description.

1. Fundamentals

2. Probing realtivistic laser-plasma interactions

- NOPA-based laser pulse generation
- Experimental setup
- Shadowgraphy of the plasma evolution

3. SPM-based laser pulse generation

Pulse duration τ < 130 fs
 ⇒ high temporal resolution

Specifications of a probe pulse laser

- **Pulse duration** τ < 130 fs
 - \Rightarrow high temporal resolution
- Wavelength $\lambda = 800 \, \text{nm}$

 \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser

Specifications of a probe pulse laser

- Pulse duration $\tau < 130 \, \text{fs}$
 - \Rightarrow high temporal resolution
- Wavelength $\lambda = 800 \,\mathrm{nm}$

 \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser

• **Spectral bandwidth** $\Delta \lambda > 100 \, \text{nm}$

 \Rightarrow Support femtosecond pulse durations, enable spectrally resolved probing options

Specifications of a probe pulse laser

- Pulse duration $\tau < 130 \, \text{fs}$
 - \Rightarrow high temporal resolution
- Wavelength $\lambda = 800 \, \text{nm}$

 \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser

• Spectral bandwidth $\Delta \lambda > 100 \, \mathrm{nm}$

 \Rightarrow Support femtosecond pulse durations, enable spectrally resolved probing options

• **Energy** *E* > 10μJ

 \Rightarrow proper illumination of the interaction region without target ionization

NOPA setup

NOPA setup

Spectral measurement

Fig.: Measured averaged spectrum (for 60 consecutive shots) of the NOPA. The standard deviation is indicated with the shaded area. Inset: Spatial profile of the NOPA.

- Suppression of the plasma emission and scattered laser light
 - ⇒ spectral filter (bandpass centered at 800 nm)

• Suppression of the plasma emission and scattered laser light

- \Rightarrow spectral filter (bandpass centered at 800 nm)
- ⇒ polarization filter

• Suppression of the plasma emission and scattered laser light

- \Rightarrow spectral filter (bandpass centered at 800 nm)
- ⇒ polarization filter
- \Rightarrow spatial filter

• Suppression of the plasma emission and scattered laser light

- \Rightarrow spectral filter (bandpass centered at 800 nm)
- ⇒ polarization filter
- \Rightarrow spatial filter
- **resolution** ⇒ microscope objective

Experimental setup

Diagnostics setup

Diagnostics setup

Spatial filter - Coronagraph

Coronagraph - Experimental results

Coronagraph - Experimental results

Probing realtivistic laser-plasma interactions Experimental setup
Shadowgraphy of the plasma evolution

Shadowgraphy of the plasma evolution

Estimation of plasma expansion velocity

Estimation of plasma expansion velocity

Estimation of plasma expansion velocity

 $\begin{aligned} \tau &= 3 - 20 \, \text{ps} & \nu_{\text{front}} = (1.27 \pm 0.06) \, \mu\text{m/ps}, & \nu_{\text{rear}} = (0.77 \pm 0.05) \, \mu\text{m/ps}, \\ \tau &= 80 - 190 \, \text{ps} & \nu_{\text{front}} = (0.09 \pm 0.03) \, \mu\text{m/ps}, & \nu_{\text{rear}} = (0.22 \pm 0.05) \, \mu\text{m/ps}. \end{aligned}$

ioq jena

Friedrich-Schiller-Universität

 $\tau = 3-20 \text{ ps}$ $v_{\text{front}} = (1.27 \pm 0.06) \,\mu\text{m/ps}$, $v_{\text{rear}} = (0.77 \pm 0.05) \,\mu\text{m/ps}$ $\tau = 80-190 \,\text{ps}$ $v_{\text{front}} = (0.09 \pm 0.03) \,\mu\text{m/ps}$, $v_{\text{rear}} = (0.22 \pm 0.05) \,\mu\text{m/ps}$.

Table: Comparison of shadowgraphy plasma expansion experiments with targets for different peak intensities.

experiment	target	intensity	λ	<i>v</i> _{front}
Becker ¹	H ₂ O droplets	$10^{16}\mathrm{W/cm^2}$	800 nm	0.38 µm/ps
This thesis	H ₂ O droplets	$4\cdot10^{19}\mathrm{W/cm^2}$	1030 nm	1.3 µm/ps
Bernert et al. ²	hydrogen jet	$5 \cdot 10^{21} \mathrm{W/cm^2}$	800 nm	23 µm/ps

 1 "Characterization of laser-driven proton acceleration with contrast-enhanced laser pulses" 2 "Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets"

1. Fundamentals

2. Probing realtivistic laser-plasma interactions

3. SPM-based laser pulse generation

- Self phase modulation (SPM)
- Single-pass SPM-based laser pulses
- Multi-pass SPM-based laser pulses
- Impact of pulse steepening

Self phase modulation (SPM)

Optical Kerr effect (intensity dependent refractive index)

$$n(t) = n_0 + n_2 I(t)$$
, where $n_2 = \frac{3\chi^{(3)}}{4\varepsilon_0 n_0^2 c}$.

(0)

Optical Kerr effect (intensity dependent refractive index)

$$n(t) = n_0 + n_2 I(t)$$
, where $n_2 = \frac{3\chi^{(3)}}{4\varepsilon_0 n_0^2 c}$.

Change in the phase: $\Phi_{\text{NL}}(t) = n_2 I(t) k_0 L$.

(0)

Optical Kerr effect (intensity dependent refractive index)

$$n(t) = n_0 + n_2 I(t)$$
, where $n_2 = \frac{3\chi^{(3)}}{4\varepsilon_0 n_0^2 c}$.

Change in the phase: $\Phi_{\text{NL}}(t) = n_2 I(t) k_0 L$.

(0)

Optical Kerr effect (intensity dependent refractive index)

$$n(t) = n_0 + n_2 I(t)$$
, where $n_2 = \frac{3\chi^{(3)}}{4\varepsilon_0 n_0^2 c}$.

Change in the phase: $\Phi_{\text{NL}}(t) = n_2 I(t) k_0 L$.

Self phase modulation (SPM)

Fig.: Simulated spectra of a laser pulse with $\tau = 130$ fs (FWHM) propagating through a 1 mm thick foil of CR-39 at different intensities.

Specifications of a probe pulse laser

- Pulse duration τ < 130 fs
 ⇒ high temporal resolution
- Wavelength $\lambda = 800-1000 \text{ nm}$ \Rightarrow No overlap with fundamental (1030 nm) and SH (515 nm) of the POLARIS laser
- Spectral bandwidth Δλ > 100 nm
 ⇒ Support femtosecond pulse durations
- **Energy** $E > 10 \mu J$
 - \Rightarrow proper illumination, no target ionization

Single-pass SPM

spectral broadening

Single-pass SPM

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

i00

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

i0Q

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

Fig.: Measurement of SPM-induced spectra in CR-39 for a pulse energy of 0.5 mJ at different intensities by varying the sample distance to the focus position. A reference spectrum in air was taken at a lower pulse energy of 0.1 mJ.

SPM - energy measurement

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a short-pass filter cutting at 1010 nm.

SPM - energy measurement

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a short-pass filter cutting at 1010 nm.

SPM - energy measurement

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar) with a short-pass filter cutting at 1010 nm.

Multi-pass cell

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130 fs (FWHM) for different intensities.

i00

lfna

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130 fs (FWHM) for different intensities.

i0Q

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130 fs (FWHM) for different intensities.

i0Q

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130 fs (FWHM) for different intensities.

i0Q

Fig.: Simulated temporal profiles of the pulse intensities for a 1.1 mm thick sheet of CR-39 with an initial pulse length of 130 fs (FWHM) for different intensities.

i0Q

Pulse steepening - spectral domain

Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.
Pulse steepening - spectral domain

Fig.: Calculated spectra of an ultrashort pulse propagating through CR-39.

Focal volume averaging

Fig.: In a simplified model, the intensity distribution can be approximated as rings of constant thickness. The corresponding intensity drops according to the Gaussian distribution exponentially.

Focal volume averaging - simulation

Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39. Right: Focal volume averaging for a transverse Gaussian intensity distribution.

Focal volume averaging - simulation

Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39. Right: Focal volume averaging for a transverse Gaussian intensity distribution.

Focal volume averaging - simulation

Fig.: Left: Calculated spectra including the effect of pulse steepening in CR-39. Right: Focal volume averaging for a transverse Gaussian intensity distribution.

Probing of laser-microdroplet interaction

- characterization of the NOPA setup
- development: imaging diagnostics + coronagraph
- plasma evolution + plasma expansion velocity

Development of a new probe pulse laser source

- Single-pass SPM \Rightarrow 50µJ pulses
- Multi-pass SPM \Rightarrow lower intensities
- Simulation: Pulse steepening + focal averaging

Acknowledgements

A special thanks to my supervisors:

- Prof. Dr. Malte Kaluza
- Dr. Yasmina Azamoum

I would also like to thank:

- Till Weickhardt
- Mathis Nolte
- Marco Hellwing
- Dr. Georg Becker
- Dr. Marco Hornung
- Dr. Matthew Schwab

Thank you for your attention.

Phase matching for the NOPA

Fig.: Left: Type-1 phase-matching angle θ as a function of the signal wavelength λ_s for different pump-signal angles α with a pump wavelength at 515 nm. Right: Calculated gain spectra for a phase matching angle of $\theta = 24.5^{\circ}$ as a function of signal wavelength λ_s for different pump-signal angles α .

Temporal description of SPM

Fig.: Left: Nonlinear phase (blue) for a pulse with $\tau = 130$ fs (FWHM) of peak intensity $I_0 = 4$ TW/cm² for 1 mm of CR-39. The instantaneous frequency change $\Delta \omega = -\frac{\partial \Phi_{\rm NL}}{\partial t}$ is shown in orange. Right: Calculated phase difference as a function of instantaneous frequency change.

Fig.: Stability measurement of the amplifier and NOPA energy over a duration of several minutes.

Spectral control of the NOPA

Fig.: Left: Geometry of the WLC (signal) and SH (pump) beams in the NOPA crystal (Type I o-o-e phase matching process). Right: NOPA spectra for different non-collinear angles α . The orange curve indicates that the spectral bandwidth can be reduced by an adjustment of the non-collinear angle and subsequent optimization of the temporal delay τ .

CPA system for probing

CPA system - spectral measurement

Fig.: Measured spectrum of the Amplifier. The graph shows the averaged spectrum for 80 consecutive shots. The standard deviation is indicated with the shaded area. The central wavelength $\lambda_0 = 1032.8$ nm, and width $\Delta \lambda = 14.1$ nm (FWHM) were determined using a Gaussian fit (orange). Inset: spatial profile of the amplified pulse. The beam radius was determined to be $w = (0.77 \pm 0.02) \text{ mm} (1/e^2)$.

Fig.: Measured pulse length at the compressor output before (blue) and after (orange) the realignment of the stretcher. The autocorrelation function was measured by TOPAG ASF-15 single shot autocorrelator. The desaturated curves show a Gaussian fit to the measured data used to determine the pulse length.

i0Q

Probing Imaging system

Fig.: Two different designs for a coronagraph imaging setup. Top: The droplets are magnified and imaged to the position of the coronagraph mask using an aberration corrected microscope objective M_1 and a tube lens (f_1) placed in a distance L_1 to the objective. The droplet with the blocked center is then re-imaged into a camera with another combination of objective and lens f_2 placed in a distance L_2 . Bottom: The second imaging of the droplet into the camera is done by a single lens with a magnification of 1.

Placement - Objective and Field lens

Fig.: Supplemental drawing for the placement of objective and tube lens. The maximum distance *L* for a desired image field *D* can be derived geometrically from the tube lens diameter d_1 and objective aperture d_M . The required field of view with a size of 300 µm is shown on the left.

100

Self-focusing distance z_{sf} :

$$z_{\rm sf} = \frac{2n_0 w_0^2}{\lambda_0} \frac{1}{\sqrt{P/P_{\rm cr} - 1}}$$
 with $P_{\rm crit} \approx \frac{\lambda_0^2}{8n_0 n_2} = 1.42 \,{\rm MW}$ at $\lambda_0 = 1030 \,{\rm nm}$,

Table: Self focusing distance z_{sf} and pulse width w_0 for different pulse energies ($\tau = 130 \text{ fs}$) calculated at a constant peak intensity $I = 10 \text{ TW/cm}^2$.

Energy [mJ]	0.1	0.5	1	2	5
pulse radius w_0 [μ m]	48	107	152	214	339
self-focusing distance $z_{ m sf}$ [mm]	0.30	0.66	0.94	1.32	2.09

SPM - pulse compression

Fig.: Top: Spectra of a reference pulse (blue) and for for pulses experiencing SPM in CR-39 (orange) recorded simultaneously with an autocorrelation measurement. Bottom: Measured Autocorrelation functions.

SPM - vacuum setup

Appendix

SPM - vacuum setup

ioq Jena

Friedrich-Schiller-Universität

SPM - vacuum setup

ioq Jena

Friedrich-Schiller-Universität

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens f = 400 mm).

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens f = 400 mm).

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens f = 400 mm).

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens f = 400 mm).

Fig.: Measurement of SPM in CR-39 performed at low pressure (5 mbar). Different pulse energies were used at a constant distance (2 cm) to the laser focus (focusing lens f = 400 mm).

Multi-pass cell

Multi-pass cell

Multi-pass cell

SPM - Pulse steepening

Wave equation of a plane wave in a nonlinear, inversion symmetric medium with slowly varying envelope approximation

$$\left(\frac{\partial^2}{\partial z^2} - \frac{n_0^2}{c^2}\frac{\partial^2}{\partial t^2}\right)\boldsymbol{E} = \frac{1}{c^2\varepsilon_0}\frac{\partial^2}{\partial t^2}\boldsymbol{P}^{(3)} \quad \text{with} \quad \boldsymbol{P}^{(3)} = \frac{3}{4}\varepsilon_0\chi^{(3)}|\boldsymbol{E}|^2\boldsymbol{E}.$$

Without slowly varying envelope approximation: $(\mathbf{E}(t) = \mathcal{E}e^{i(kz-\omega t)})$

$$\left(\frac{\partial}{\partial z} + \frac{n_0}{c}\frac{\partial}{\partial t}\right)\mathcal{E} + \frac{1}{2\mathrm{i}k}\left(\frac{\partial^2}{\partial z^2} - \frac{n_0^2}{c^2}\frac{\partial^2}{\partial t^2}\right)\mathcal{E} = \frac{1}{2\mathrm{i}k}\frac{3\omega_0^2}{4c^2}\left(\frac{1}{\omega_0^2}\frac{\partial^2}{\partial t^2} - \frac{2\mathrm{i}}{\omega_0}\frac{\partial}{\partial t} - 1\right)\chi^{(3)}|\mathcal{E}|^2\mathcal{E}.$$

Further simplification and splitting of amplitude $|\mathcal{E}|$ and phase Φ yields

$$\begin{bmatrix} \frac{\partial}{\partial z} + \frac{n_0}{c} \left(1 + \frac{3\tilde{n}_2}{n_0} |\mathscr{E}|^2 \right) \frac{\partial}{\partial t} \end{bmatrix} |\mathscr{E}| = 0, \\ \begin{bmatrix} \frac{\partial}{\partial z} + \frac{n_0}{c} \left(1 + \frac{\tilde{n}_2}{n_0} |\mathscr{E}|^2 \right) \frac{\partial}{\partial t} \end{bmatrix} \Phi = \frac{\tilde{n}_2 \omega_0}{c} |\mathscr{E}|^2.$$