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1 Introduction

Books on plasma physics:

1. FRANCIS F. CHEN, “Introduction to Plasma Physics and Controlled Fusion, Volume 1:
Plasma Physics”, Plenum Press (2016)

2. F. A. BITTENCOURT, “Fundamentals of Plasma Physics”, Springer (2004)

3. U. SCHUMACHER, “Fusionsforschung”, Wissenschaftliche Buchgesellschaft (1993)

Many contents in this scripts and nearly all figures were taken from F. A. BITTENCOURT,
“Fundamentals of Plasma Physics”.

1.1 Why study plasma physics?

The cheapest answer to the question state in the title of this section is that more than 99,99 %
of all (visible) matter in the universe is in the plasma state.

But we should be more specific and try to define what a plasma actually is. Mostly a plasma
is a very diluted, ionized gas, which consists of positive ions and electrons. However, we
should be more specific but we will come to that later. The reason for that is, that even air
contains ionized particles but is not considered to be a plasma.

Plasmas mainly occur in nature in astrophysical environments:

• Stellar interior (inside the sun)

• Stellar atmospheres

• Gaseous nebulas

• Interstellar hydrogen plasma

• Solar wind

• VAN-ALLEN radiation belts

• Aurora borealis

• Lightning bolts

However, plasmas can also be generated on earth via technology:

• Gas inside a fluorescent light tube

• Nuclear fusion reactor

• Laser generated plasma

Luckily, we live in that ≪ 1% of matter in the universe, in which plasmas do not occur nat-
urally. The reason is, that the formation of complex molecules (that we are made of) is not
possible in plasmas, since high energetic particles would collide and destroy them immedi-
ately.

3



1.2 The Saha equation Plasma Physics

1.2 The Saha equation

If we want to quantify the relative amount of ionized particles in a gas, we can use the SAHA

equation, which we will simply state here:

ni

nn
≈ 2.4 ·1021 (T [K])3/2

ni [ 1
m3 ]

exp

(
− Ui

kB T

)
, (1.1)

where ni and nn are the number densities of ionized and neutral atoms. T denotes the gas
temperature and Ui the ionization energy of the gas.

With the SAHA equation we can explain all relevant cases of plasma occurrences.

a) First we consider air at room temperature T = 300K
∧= 25meV and the ionization en-

ergy of nitrogen at Ui ≈ 14,5eV. With a number densities of gas molecules of about
nn = 3 ·1025 1

m3 we find that the relative amount of ionized particles is

ni

ni +nn
≈ ni

nn
≈ 10−122. (1.2)

b) The number of ionized atoms remains low until we reach a regime of Ui ∼ kB T , then
ni /nn rises quickly. Then the gas is transformed into the plasma state mainly through
collisional ionization. Eventually ni ≫ nn , the plasma gets fully ionized. That is the
reason why plasmas occur within stars (T ≥ 106 . . .107 K) but not on earth.

c) Ionized atoms can recombine with electrons, but the recombination rate depends on
ni ≈ ne . This means that for low densities recombination is very unlikely and the de-
gree of ionization remains high. Thus, the interstellar medium remains ionized/plasma
even at very low temperatures.

1.3 Preliminary definition of a plasma

A plasma needs to contain a large number of free electrons and ionized atoms or
molecules. Nevertheless, a plasma can contain neutral particles and is macro-
scopically neutral. It also exhibits collective behaviour due to long-range COULOMB

forces.

Often we observe other interactions involving neutral particles, which are only short-range
forces (e. g. VAN-DER-WAALS forces in the gas, induced or permanent dipoles). These inter-
actions only occur with direct neighbours (neutral-neutral oder neutral-charged). In con-
trast the interaction between two ore more charged particles has a much longer range of
action. Thus, one charged particle interacts with a much larger number of particles. This
leads to collective behaviour.

A more precise definition of a plasma is given in the following chapter via four criteria, if a
certain medium containing charged particles acts as a plasma or not.
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1.4 Plasma criteria Plasma Physics

1.4 Plasma criteria

First we consider the effect of DEBYE shielding which is the distance over which influences of
the electric field of a single particle is felt by other particles inside a plasma. It is given by:

λD =
√
ε0kB T

ne e2
, (1.3)

where T is the electron temperature and ne the electron number density. This equation de-
scribes the shielding of static electric fields on the order of λD via the plasma by rearranging
itself. Thus, electric fields/potentials can occur in a plasma only over distances of λD .

The shielding effect also occurs at plasma boundaries leading to the formation of plasma
sheaths around the boundary surface d ≈λD .

We can use the DEBYE length for the first criterion for the plasma definition:

The characteristic dimension L of the system must be larger than λD , otherwise
there is not enough space for sufficient collective shielding

L ≫λD . (1.4)

For the second criterion we define the Debye-sphere as the sphere with radiusλD . The collec-
tive plasma behaviour between particles will only take place inside the DEBYE-sphere. The
second criterion now states

The number of electrons within the DEBYE-sphere, ni ≈ ne is very large

ND = 4π

3
λ3

D ne ≈ neλ
3
D ≫ 1 . (1.5)

We can also express this condition that the average distance between electrons n−1/3
e must

be much lower than the DEBYE-length. Hereby we define the plasma parameter g as

g = 1

neλ
3
D

⇒ Plasma approximation: g ≪ 1. (1.6)

The third criterion states

The plasma is macroscopically neutral

ˆ

V ≫λ3
D

(
ne −

∑
i

Zi ni

)
dV → 0, (1.7)

where i describes all ion species in the plasma.
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1.5 Application of plasma physics to thermonuclear fusion Plasma Physics

The first three criteria of a plasma were based on a length scale of the plasma. Now we want
to introduce a characteristic time/frequency scale called the plasma frequency. The instan-
taneous disturbance of the plasma from the equilibrium condition leads to local charge sep-
arations and space charge fields. They are oriented in such a way, that they pull back the
electrons to their initial positions. This leads to an overshoot of the electrons and creates an
oscillation around the equilibrium position with a natural frequency

ωp =
√

ne e2

ε0me
plasma frequency . (1.8)

In the temporal average we will still preserve macroscopic charge neutrality. However, on
time scales

Tp = 2π

ωp
, (1.9)

dissipation effects need to be taken into account. For example collisions between electrons
and neutral particles lead to damping. If they occur with a characteristic frequency νen = 1

τen
the interaction with neutral particles dominates, if νen >ωp . Then the plasma behaves like a
neutral gas. This leads us to the fourth criterion

The average time τ between e−n collisions has to be large compared to the char-
acteristic time over which the plasma parameters are changing

ωτen > 1 , (1.10)

where ω is the angular frequency of typical plasma oscillations (e. g. the plasma
frequency).

This means not only the electron density ne and temperature Te , but also the density of
neutral particles nn is important for the plasma definition.

1.5 Application of plasma physics to thermonuclear fusion

First we want to note, that the binding energy per nucleon Ebind depends on the atomic mass
number. The most stable nucleus is 56Fe. If we use nuclear reactions like fusion we can gain
energy by e. g. burning 1H to 4He in the sun. The chemical reaction looks like

41H → . . . → 4He+∆E

∆E =∆mc2 = (4 ·1.008145u−4.00387u)c2 = 26,72MeV. (1.11)

This process happens in the sun at a rate of

≈ 600 ·109 kg1H → 596 ·109 kgHe+ ∆E

c2
(1.12)

every single second. This energy difference corresponds to an intensity of 1,37 kW
m2 on the

surface of the earth. The proton-proton reaction in the sun occurs in different steps namely
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1.5 Application of plasma physics to thermonuclear fusion Plasma Physics

1. 1H + 1H −−→ 2He −−→ 2H + e+ + νe + 0,42 MeV

2. e – + e+ −−→ 2γ (1,022MeV)

3. 2H + 1H −−→ 3He + γ (5,49MeV)

4. 3He + 3He −−→ 4He + 2 1H(2,86MeV)

In total the p-p reaction looks like

6 H −−→ 4He+2 1H+2e++2νe +2γ+ (26,724MeV). (1.13)

This is the dominant reaction for the temperatures in the sun at T = 10. . .106 K. We may ask,
why we cannot utilize this reaction on earth. The problem lies within the first step where two
Hydrogen atoms form the Deuterium atom. Here the cross section (due to weak interaction)
is very low, thus this process is not feasible on earth.

Other possible fusion reactions may be:

• 2H + 2H −−→ 3He + n + 3,27 MeV

• 2H + 2H −−→ 3H + 1H + 4,03 MeV

• 2H + 3H −−→ 4He + n + 17,58 MeV

• 2H + 3He −−→ 4He + 1H + 18,34 MeV

The third fusion process is to be considered the best reaction to realize nuclear fusion on the
earth.

Fig. 1: Fusion cross sections, in barns (1 barn = 10−28 m2), as a function of energy, in keV, for the
hydrogen reactions.

We also need to consider the cross sections of the fusion reactions shown in figure 1. The
challenge is that we need to generate plasmas at high temperatures (∼ 10keV) to surpass
the COULOMB barrier of the positively charged nuclei. We also need to have a high density
in order to keep the fusion reaction at high temperatures. Furthermore the plasma needs
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1.5 Application of plasma physics to thermonuclear fusion Plasma Physics

to be confined for a sufficiently long time τ. Then we have a substantial number of fusion
reactions which leads to ignition. For this to work the plasma confinement is essential.

One criterion for ignition of nuclear fusion is called the Lawson criterion

neτ ·kB T ≈ 3,3 ·1015 keVs

cm3
, (1.14)

which applies to all kinds of plasma confinement. We also want to mention different con-
finement types:

1. open systems (magnetic mirrors/bottles)

2. closed systems (toruses)

3. laser-pellet fusion, Inertial Confinement Fusion ICF

The first two confinement types are referred as Magnetic Confinement Fusion MCF.

Fig. 2: Schematic illustration showing the magnetic field configurations of some basic schemes for
plasma confinement. (a) magnetic mirror system. (b) Tokamak.
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2 Motion of charged particles in constant and uniform
fields

2.1 Preconditions

We assume that E (r , t ) and B (r , t ) as a function of space r and time t , not affected by parti-
cles. In this chapter we assume, that the fields are temporally constant and spatially uniform.
The motion of charged particles in the electric field E and magnetic field B is governed by
the LORENTZ equation

dp

dt
= F = q(E +v ×B ) = m

dv

dt
. (2.1)

In this lecture course we will neglect any relativistic effects concerning the change of the

mass of the charged particles, thereby dp
dt = m dv

dt . We will also neglect radiation effects
caused by the acceleration of the charged particles.

2.2 Energy conservation

We want to discuss energy conservation for two different cases. We start with the situation
of E = 0. Then

dp

dt
= qv ×B

m
dv

dt
·v = q(v ×B ) ·v = 0

⇒ d

dt

(m

2
v 2

)
= d

dt
Ekin = 0. (2.2)

The kinetic energy of the charged particle is constant. The B-field alone does not transfer
energy to the particle. This relation is not valid for ∂B

∂t ̸= 0 because then, due to FARADAY’s
law, an energy transfer is possible.

For a nonzero electric field E ̸= 0 we find

m
dv

dt
·v = q(E +v ×B ) ·v

⇒ d

dt

(m

2
v 2

)
= d

dt
Ekin = qE ·v . (2.3)

Since ∇⃗∇∇×××E = 0 the electric field can be written as the gradient of the electrostatic potential

E =−∇⃗∇∇Φel ⇒ d

dt
Ekin =−q∇⃗∇∇Φel ·v =−q

dΦel

dt
. (2.4)

For a static potentialΦel that is not explicitly dependent on time we find

d

dt

[
1

2
mv2 +qΦel

]
= 0. (2.5)

Thus the sum of kinetic and electric potential energy is constant for static electric and mag-
netic fields.
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2.3 Uniform electric and magnetic field Plasma Physics

2.3 Uniform electric and magnetic field

Uniform E-field

We start with the situation of vanishing B-field and E (r , t ) = E0. Then the equation of motion
is simplified to

m
dv

dt
= qE0 ⇒ r (t ) = 1

2

qE0

m
t 2 +v0t + r0, (2.6)

where r0 and v0 are the initial position and velocity at t = 0. We observe an acceleration qE0
m

only in the direction of the E-field.

Uniform B-field

Now the situation is reversed with vanishing E-field and B (r , t ) = B0. We split the particles
velocity v into components parallel v∥ and perpendicular v⊥ with respect to B0. Then the
equation of motion becomes

dv∥
dt

= 0 and
dv⊥
dt

= q

m
(v⊥×B0). (2.7)

The force due to the perpendicular velocity component does not affect the parallel compo-
nent since v⊥×B0 is perpendicular to B0 and thus also perpendicular to v∥. This indicates
that the parallel motion remains unchanged v∥ = v∥,0.

However, for the perpendicular component we find

dv⊥
dt

=ωc ×v⊥ with ωc =−qB0

m
= |q|B0

m
eω. (2.8)

The vector ωc is a constant axial vector pointing in direction of B for q < 0 and in opposite
direction of B0 for q > 0. Integrating equation (2.8) leads us to

v⊥ =ωc × rc (2.9)

with rc being a vector pointing from the (momen-
tary) centre of gyration G to the momentary posi-
tion of the particle. We call G the guiding centre
of the particles motion.

For v∥ ̸= 0 both trajectories form a helix shape
with a pitch angle α

α= arctan

(
v⊥
v∥

)
= arcsin

(v⊥
v

)
. (2.10)

The length ωc of the axial gyration vector is called
cyclotron or Larmor frequency and rc

rc = v⊥
ωc

= mv⊥
|q |B0

(2.11)

is called the Larmor radius.
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2.3 Uniform electric and magnetic field Plasma Physics

Uniform E and B-field

If we have both uniform electric and magnetic fields we again separate v and E into compo-
nents parallel and perpendicular to B0. Then we find for the equations of motion

m
dv∥
dt

= qE∥ (2.12)

m
dv⊥
dt

= q(E⊥+v⊥×B ). (2.13)

Both equations are evolving completely independently. We can solve the first equation (2.12)
immediately as

r∥ = 1

2

(
qE∥
m

)
t 2 +v∥,0t + r0. (2.14)

The particle is accelerated along the magnetic field lines by the E∥-field. For the second
equation (2.13) we make the ansatz

v⊥ = v ′
⊥(t )+vE (2.15)

where vE is a constant velocity in the plane perpendicular to B which is still to be deter-
mined. However, if we transform into a frame of reference moving with vE , v ′

⊥ describes the
particles velocity perpendicular to B .

Now we will rewrite the perpendicular component E⊥ of the electric field as

E⊥ =−E⊥×B

B 2
×B (2.16)

and using dvE
dt = 0 we can rewrite (2.13) as

m
dv ′

⊥
dt

= qE⊥+ (v ′
⊥+vE )×B

= q

(
−E⊥×B

B 2
+ (v ′

⊥+vE )

)
×B . (2.17)

If we choose vE = E⊥×B
B 2 the equation simplifies to

m
dv ′

⊥
dt

= q(v ′
⊥×B ). (2.18)

In this frame of reference the electric field component is “transformed away” and B remains
unchanged. Here the particle performs a circular motion with the LARMOR frequencyωc and
radius r ′

c . The overall motion is now a superposition of a

1. circular motion (cyclotron motion) in the plane ⊥ to B

2. uniform motion with vE ⊥ E⊥ and B

3. uniform acceleration with
qE∥
m along B
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2.3 Uniform electric and magnetic field Plasma Physics

Total velocity of charged particles in uniform fields

v (t ) =ωc × rc + E⊥×B

B 2
+ qE⊥

m
+v⊥(0). (2.19)

Since E∥×B = 0, the constant velocity vE becomes

vE = E ×B

B 2
drift velocity. (2.20)

It is called the uniform E ×B drift velocity of the guiding centre of the gyration. It is inde-
pendent of mass and sign of the charge of the particles, i. e. it is the same for all charged
particles. This leads to a cycloid motion in the plane perpendicular to B in the lab frame.

Physical explanation of the drift velocity

We also want to give a physical explanation of the E×B drift velocity as shown in figure 3. We
note that E⊥ and B act simultaneously on the charged particles. E⊥ accelerates the particles,
if the B-field induced cyclotron motion is parallel to the electric field E⊥ (for q > 0), whereas
it decelerates them when the motion is antiparallel to E⊥. If we now look at the LARMOR

radius

rc = m

q

v⊥
B

, (2.21)

we observe that it changes accordingly under the action of E⊥. So as the particle is accel-
erated, the radius of curvature increases and in the next half cycle it decreases again. This
leads to a drift of the guiding centre perpendicular to E and B . We observe a different num-
ber of arcs for the (heavy) ions and (light) electrons. However, the size of the arcs is larger for
the heavy ions. Thus the net drift velocity vE is the same for all charged particle species in a
plasma. For a collisionless plasma we will not observe a net current, since all particles move
in the same direction with equal speed.

Fig. 3: Cycloidal trajectories by ions and electrons in crossed electric and magnetic fields. We observe
a drift in the direction of E ×B .

However, if collisions e. g. with neutral particles are taken into account, the drift velocities
for ions and electrons are different (ions experience more collisions). Then the ion current
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2.4 Drift due to external forces Plasma Physics

is smaller than the electron current leading to a net current perpendicular to E and B . Since
this current is mainly produced by the electrons, it is oriented antiparallel to the electron
motion. This current is known as Hall current.

2.4 Drift due to external forces

We assume an additional, uniform and constant force F acting on the plasma, e. g. gravita-
tion. Then the equations of motion are modified as

m
dv

dt
= q(E +v ×B )+F . (2.22)

This leads to another drift velocity analogous to the effect of the electric field E

vF = F ×B

qB 2
= m

q

g ×B

B 2
for F = mg . (2.23)

Note that vF depends on m
e . For oppositely charged particles this leads to different drift

directions. This leads to a non-vanishing current, even for collisionless plasma.
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3 Charged particles in non-uniform magnetostatic
fields

3.1 Preconditions

The solution of the equation of motion is often difficult for varying fields, sometimes analyt-
ical solutions do not exist and we need to implement numerical schemes. However, we can
make approximations if

• the details of the motion are not of interest (only drift motion is of interest)

• B-field is strong and slowly varying in space

• E-field is weak (or vanishing).

Therefore we can assume that the fields are constant/uniform with respect to one gyration
about B . Here the particles move in static and slightly inhomogeneous B-fields. Slightly
inhomogeneous means that the variation δB of the magnitude of B over rc is much smaller
than the amplitude of the magnetic field

δB = rc∇⃗∇∇|B | << |B |. (3.1)

Then a solution in first-order approximation is sufficient. This is often referred as the ALFVÉN-
approximation or guiding-centre-approximation.

For homogeneous magnetic fields B the motion is perfectly circular and the guiding centre
moves with constant speed along B . For slightly inhomogeneous magnetic fields the motion
about B is nearly circular leading to a drift across B and a gradual change of the velocity
component along the magnetic field lines.

In this description the gyration is not of interest, we only consider the guiding centre motion
corresponding to an average over the rapid gyrations. Thus we are looking for transverse
drift and the parallel acceleration of the guiding centre with respect to B .

3.2 Spatial variation of the magnetic field

We start with a general magnetic field in cartesian coordinates

B (r ) = Bx(r )êx +By (r )êy +Bz(r )êz . (3.2)

Here each component Bi (r ) may vary with respect to all three cartesian coordinates. This
means that nine parameters are necessary for a complete description of the spatial variation
of B at a certain point r :
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3.2 Spatial variation of the magnetic field Plasma Physics

∇⃗∇∇B = (êx , êy , êz)


∂Bx

∂x

∂By

∂x

∂Bz

∂x
∂Bx

∂y

∂By

∂y

∂Bz

∂y
∂Bx

∂z

∂By

∂z

∂Bz

∂z


êx

êy

êz

= (∇⃗∇∇Bx ,∇⃗∇∇By ,∇⃗∇∇Bz). (3.3)

Here, the gradient is applied to the different vector components of the magnetic field. Strictly
speaking, this quantity is a tensor. Since

∇⃗∇∇···B = ∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z
= 0 (3.4)

only 8 terms (or two divergence terms) are independent. The number of independent terms
is further restricted by AMPERÉS law

∇⃗∇∇×××B =µ0

(
j +ε0

∂E

∂t

)
, (3.5)

if the current density j is nonzero or we have temporal varying electric fields. For B (r =
0) = B0 = B0êz we can sort the different terms of the tensor in equation 3.3 into different
categories:

• divergence terms:
∂Bx

∂x
,
∂By

∂y
,
∂Bz

∂z

• gradient terms:
∂Bz

∂x
,
∂Bz

∂y

• curvature terms:
∂Bx

∂z
,
∂By

∂z

• shear terms:
∂Bx

∂y
,
∂By

∂x

Now we may ask how the B-field looks like due to influences of the different groups.

Divergence terms

Assuming that ∂Bz
∂z ̸= 0, at least one of the other divergence terms

∂By

∂y , ∂Bz
∂z cannot vanish

either due to ∇⃗∇∇···B = 0. At any point in space the magnetic flux lines are parallel to B and their
areal density is proportional to |B | at this point. Then B is also referred to as the magnetic
flux density.

We can now define an element of arc along such a flux line ds = dx êx +dy êy +dz êz . Since
ds ∥ B

ds ×B = 0 ⇒ dx

Bx
= dy

By
= dz

Bz
. (3.6)
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3.2 Spatial variation of the magnetic field Plasma Physics

Since around the origin B mainly varies in êz direction we can expand Bx and By into a
TAYLOR series up to first order

Bx(x,0,0) ≈ Bx(0,0,0)+ ∂Bx

∂x
x1 = ∂Bx

∂x
x1

By (y,0,0) ≈ By (0,0,0)+ ∂By

∂y
y1 =

∂By

∂y
y1.

(3.7)

Now lets look at the projections of the magnetic field lines crossing the (x, y)-plane at z = 0
onto the (x, z)-plane and (y, z)-plane shown in figure 4.

Fig. 4: Left: Projections of different components of B-field onto the three axes of the cartesian coor-
dinate system.
Right: Geometry of the magnetic field lines corresponding to the divergence terms, when they
are positive.

Then we find the following relations

dx

dz
= Bx

Bz
= 1

Bz

∂Bx

∂x
x1 and

dy

dz
= By

Bz
= 1

Bz

∂By

∂y
y1. (3.8)

This means that the field lines have to converge or diverge in (x, z)-plane or (y, z)-plane de-
pending on the sign of the divergence terms of B . This is one of the reasons, why the vector
operation ∇⃗∇∇···B is called divergence.

Gradient and curvature terms

Here we assume that the B-field magnitude increase in êx direction. This is schematically
shown in figure 5.

We first may assume that the z-component of B may change linearly in x-direction like

B = B0(1+a x)êz . (3.9)

However, for j = 0 this equation cannot fulfil ∇⃗∇∇×××B = 0. Therefore we have to add a curvature
term like

B = B0(a zêx + (1+a x)êz). (3.10)

Thus a gradient term is only possible in combination with the curvature of the magnetic field
lines.
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3.3 Equation of motion in first order approximation Plasma Physics

Fig. 5: Left: Geometry of the magnetic field lines corresponding to equation (3.9) when B has a gradi-
ent in the x direction. However, this field does not satisfy ∇⃗∇∇×××E = 0.
Right: Geometry of the magnetic field lines corresponding to (3.10), with gradient and curva-
ture terms.

Shear terms

Shear terms lead to twisting of the magnetic field lines about each other. However, no first
order drift velocity is caused by these terms. Therefore we will neglect them in our discus-
sion.

3.3 Equation of motion in first order approximation

Again we assume now that the magnetic field in the origin has the form B (r = 0) = B0êz .
In the proximity of the origin we can expand the magnetic field into a first order TAYLOR

expansion

B (r ) = B0 + r · (∇⃗∇∇B )+ . . . , (3.11)

where ∇⃗∇∇B denotes the tensor given in (3.3). We may also rewrite this as

r · (∇⃗∇∇B ) = (r · ∇⃗∇∇)B =
(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
B , (3.12)

where nine partial derivatives of B need to be calculated at the origin. Since we are assuming
that the spatial variation of B in the order of the LARMOR radius is negligible, the condition

δB = |r · (∇⃗∇∇B )|≪ |B0| (3.13)

is clearly met. We can now write down the equations of motion with E = 0 using (3.11)

m
dv

dt
= q(v ×B0)+qv × [r · (∇⃗∇∇B )]. (3.14)
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3.4 Average force over one gyration period Plasma Physics

The actual particle velocity can also be written as a superposition

v = v (0) +v (1) = dr (0)

dt
+ dr (1)

dt
, (3.15)

where |v (1)|≪ |v (0)| is a first-order approximation. The solution of the zero-order equation

m
dv (0)

dt
= q(v (0) ×B0) (3.16)

was already done in chapter 2. Neglecting all second order terms (any product of first order
terms r , v ,B ) we find

v × [r · (∇⃗∇∇B )] = v (0) × [r (0) · (∇⃗∇∇B )]. (3.17)

Including all these approximations, the equation of motion (3.14) becomes

m
dv

dt
= q(v ×B0)+qv (0) × [r (0) · (∇⃗∇∇B )]. (3.18)

The second term on the right hand side refers to an additional force term which we already
discussed in section 2.4. This force, however, is not constant since it depends on the instan-
taneous particle position r (0). This leads to small oscillations during the gyration period. We
can smooth out the oscillations by averaging this force term over one gyration period of the
force term qv (0) × [r (0) · (∇⃗∇∇B )]. This allows us to determine the parallel acceleration of the
guiding centre and its transverse drift.

3.4 Average force over one gyration period

Now we consider the case where the component of the particle’s initial velocity along the
B-field is zero, so that the particle’s path is nearly circular. In a uniform magnetic field this
would be equivalent to observing the particle motion in a coordinate system moving with the
guiding centre velocity v∥ ̸= 0. However, when the field lines are bent, a frame of reference
sliding along B is not an inertial system anymore and the curvature of the field lines give rise
to inertial forces and therefore a curvature drift of the particle.

For the moment we will assume that the field lines are straight and the frame of reference
is moving with v∥ and we only observe transverse motion. The zero-order variables r (0) and
v (0) are situated in the (x, y)-plane. The force term from last section

F = qv (0) × [r (0) · (∇⃗∇∇B )] (3.19)

can be separated into components parallel F∥ and perpendicular F⊥ with respect to B =
B0êz . Using a local cylindrical coordinate system (r,ϕ, z) we have

r (0) · (∇⃗∇∇B ) = r (0)∂B

∂r
. (3.20)

Any component of (∇⃗∇∇B ) perpendicular to r (0) cancels due to the dot-product. For B =
Br êr +Bϕêϕ+Bz êz , the ϕ-component is parallel to v (0) (since v (0) ⊥ r (0) at the origin and
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3.4 Average force over one gyration period Plasma Physics

also perpendicular to B0) and therefore gives no contribution to F , while Br êr contributes to
F∥ and Bz êz contributes to F⊥. Hence, we can split equation (3.19) as follows:

F∥ = q(v (0) × êr )r (0)∂Br

∂r
= |q|v (0)r (0)∂Br

∂r
êz (3.21)

F⊥ = q(v (0) × êz)r (0)∂Bz

∂r
=−|q |v (0)r (0)∂Bz

∂r
êr . (3.22)

Note that if q > 0 we have v (0) × êr = v (0)êz , whereas if q < 0 we have v (0) × êr =−v (0)êz . We
rewrite the prefactor in the previous equations as

|q |v (0)r (0) = 2
1
2 mv (0)2

2B0
= 2

W⊥
B0

, (3.23)

where W⊥ is the perpendicular component of the kinetic energy.

The magnetic moment µ

The circular motion of the particles around B0 create a ring current which also generates a
magnetic field Bi oriented antiparallel to the external magnetic field (diamagnetic properties
of a plasma). The magnetic moment µ associated with the circulating current is normal to
the area bounded by the particle orbit and is given by

|µ| = I · A. (3.24)

This circulating current corresponds to a flow of charge and is given by

I = |q |
Tc

= |q|
2π

ωc . (3.25)

With A =πr 2
c and rc = v⊥

ωc
and ωc = |q|B

m the magnitude |µ| becomes

|µ| = 1

2
|q|ωc r 2

c =
1
2 mv2

⊥
2B

= W⊥
B

. (3.26)

The magnetic moment points into opposite direction of the magnetic field, therefore

µ=−W⊥
B 2

B . (3.27)

Now we can write (3.21) and (3.22) as

F∥ = 2|µ|∂Br

∂r
êz , F⊥ =−2|µ|∂Bz

∂r
êr . (3.28)

The results apply to positively and negatively charged particles. The average values of F∥ and
F⊥ over one gyration period are given by〈

F∥
〉= 2|µ| 1

2π

˛
∂Br

∂r
êz dϕ= 2|µ|êz

〈
∂Br

∂r

〉
(3.29)

〈F⊥〉 =−2|µ| 1

2π

˛
∂Bz

∂r
êr dϕ= 2|µ|

〈
êr
∂Bz

∂r

〉
. (3.30)〈

F∥
〉

leads to an acceleration of the guiding centre along B due to a radial variation of the
radial component of B or due to divergence terms of B .

〈F⊥〉 leads to a transverse drift of the guiding centre due to gradient terms of B .
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3.4 Average force over one gyration period Plasma Physics

Parallel force

We now proceed to evaluate each force term separately. Note that from ∇⃗∇∇···B = 0 we have, in
cylindrical coordinates,

1

r

∂

∂r
(r Br )︸ ︷︷ ︸

= ∂Br

∂r
+ Br

r

+1

r

∂

∂ϕ

(
Bϕ

)+ ∂

∂z
(Bz) = 0. (3.31)

Since at r = 0 we have Br = 0 and Br changes only very slightly with r we find

∂Br

∂r
= Br

r
⇒ ∂Br

∂r
=−1

2

(
1

r

∂Bϕ

∂ϕ
+ ∂Bz

∂z

)
. (3.32)

Hence, taking the average over one gyration period〈
∂Br

∂r

〉
=− 1

2r

〈
∂Bϕ

∂ϕ

〉
− 1

2

〈
∂Bz

∂z

〉
. (3.33)

We start by looking at the first term of (3.33). Since B is single valued, moving along the
particle orbit Bϕ may vary but it has to have the same value at the end again, thus the integral
is zero

1

r

〈
∂Bϕ

∂ϕ

〉
= 1

2πr

˛
∂Bϕ

∂ϕ
dϕ= 0. (3.34)

Now we consider the second term of (3.33). We note that ∂Bz
∂z is a very slowly varying function

inside the particle orbit, thus it can be taken out of the integral〈
∂Bz

∂z

〉
= 1

2π

˛
∂Bz

∂z
dϕ= ∂Bz

∂z
≈ ∂B

∂z
. (3.35)

It is justifiable to replace Bz by B since all spatial variations are very small. Finally we obtain
from (3.34), (3.35) and (3.33) 〈

∂Br

∂r

〉
=−1

2

∂B

∂z
. (3.36)

Using this the parallel force becomes

〈
F∥

〉=−|µ|∂B

∂z
êz =−|µ|(∇⃗∇∇B)∥. (3.37)

Perpendicular force

For the perpendicular force it is convenient to consider a two-dimensional cartesian coordi-
nate system with x = r cosϕ and y = r sinϕ. Then

∂

∂r
= dx

dr

∂

∂x
+ dy

dr

∂

∂y
= cosϕ

∂

∂x
+ sinϕ

∂

∂y
. (3.38)
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Therefore we obtain〈
êr
∂Bz

∂r

〉
=

〈(
cosϕ
sinϕ

)(
cosϕ

∂Bz

∂x
+ sinϕ

∂Bz

∂y

)〉
=

〈
cos2ϕ

∂Bz

∂x
êx

〉
+

〈
sinϕcosϕ

∂Bz

∂x
êy

〉
+

〈
cosϕsinϕ

∂Bz

∂y
êx

〉
+

〈
cos2ϕ

∂Bz

∂y
êy

〉
. (3.39)

Nest we approximate ∂Bz
∂x = ∂B

∂x and ∂Bz
∂y = ∂B

∂y . Since these terms are slowly varying functions

inside the particle orbit they can be taken outside the integral sign. Noting that
〈

sinϕcosϕ
〉=

0 and
〈

cos2ϕ
〉= 〈

sin2ϕ
〉= 1

2 , we obtain〈
êr
∂Bz

∂r

〉
= 1

2

∂B

∂x
êx + 1

2

∂B

∂y
êy . (3.40)

Substituting this into the expression of the perpendicular force (3.22) this results in

〈F⊥〉 =−|µ|
(
∂B

∂x
êx + ∂B

∂y
êy

)
=−|µ|(∇⃗∇∇B)⊥. (3.41)

Total average force

We can now proceed to write down a general expression for the total average force as

〈F 〉 = 〈
F∥

〉+〈F⊥〉 =−|µ|(∇⃗∇∇B)∥−|µ|(∇⃗∇∇B)⊥ =−|µ|(∇⃗∇∇B). (3.42)

3.5 Gradient drift

Since 〈F⊥〉 is perpendicular to the magnetic field it causes the guiding centre to drift with the
velocity (c. f. E ×B drift)

vG = 〈F⊥〉×B

qB 2
=−|µ|

q

∇⃗∇∇B ×B

B 2
. (3.43)

This gradient drift is perpendicular to B and the field gradient. Its directions depends on the
charge sign. Thus, positive and negative charges drift in opposite directions.

The physical reason for this gradient drift can be seen as follows. Since the LARMOR radius
of the particle orbit decreases as the magnetic field increases, the radius of curvature of the
orbit is smaller in the regions of stronger B field. The positive ions gyrate in the clockwise
direction for B pointing towards the observer, while the electrons gyrate in the counter clock-
wise directions, so that positive ions drift to the left and electrons to the right (see figure 6).
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3.6 Parallel acceleration of guiding centre Plasma Physics

Fig. 6: Charged particles drift to to a field gradient (∇⃗∇∇B) perpendicular to B .

3.6 Parallel acceleration of guiding centre

The expression (3.37) for the parallel force
〈

F∥
〉

shows that, when the magnetic field has a
longitudinal variation, i. e. divergence of the field lines along the z-direction, an axial force
along z accelerates the particle in the direction towards decreasing field strength, irrespec-
tive of whether the particle is positively or negatively charged (see figure 7).

Fig. 7: Repulsion of gyrating charges from a region of converging magnetic field lines.

There are several important consequences of this repulsion of gyrating charges from a region
of converging field lines.

3.6.1 Invariance of magnetic moment and flux

Using (3.37), the parallel force is given as

m
dv∥
dt

êz =−|µ|∂B

∂z
êz with |µ| =

1
2 mv2

⊥
B

. (3.44)
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If we multiply both sides of this equation by v∥ = dz
dt we obtain

mv∥
dv∥
dt

= d

dt

(
1

2
mv2

∥

)
=−W⊥

B

∂B

∂z

dz

dt
. (3.45)

Since the total kinetic energy of a charged particle is constant in magnetostatic fields W⊥+
W∥ =const., if follows that

d

dt
(W⊥) =− d

dt

(
W∥

)=− d

dt

(
1

2
mv2

∥

)
(3.45)= W⊥

B

(
∂B

∂z

dz

dt

)
= W⊥

B

dB

dt
, (3.46)

where dB
dt represents the rate of change of B as seen by the particle as it moves in the spatially

varying magnetic field. Comparing this result with the following identity

d

dt
(W⊥) = d

dt

(
W⊥B

B

)
= W⊥

B

dB

dt
+B

d

dt

(
W⊥
B

)
︸ ︷︷ ︸

=0

. (3.47)

Thus we conclude

First adiabatic invariant

|µ| = W⊥
B

= const. (3.48)

Therefore, as the particle moves into regions of converging B , the LARMOR frequency and
perpendicular velocity increase,

ωc = |q|
m

B , v⊥ =
√

2B |µ|
m

, rc = 1

|q |

√
2m|µ|

B
m, (3.49)

while the cyclotron radius decreases. However, the magnetic moment remains constant.
This is only valid for slightly inhomogeneous magnetic fields, when the spatial variation of
B inside the particle orbit is small. Consequently the orbital magnetic moment is said to be
an adiabatic invariant.

The magnetic flux Φm enclosed by one orbit of the particle is given by

Φm =
ˆ

S
B ·dS =πr 2

c B =πm2v2
⊥

q2B
= 2πm

q2
|µ| = const., (3.50)

hence, as the charged particle moves in a region of converging B field, it will orbit with in-
creasingly smaller radius, so that the magnetic flux enclosed by the orbit remains constant.

3.6.2 Magnetic mirror effect

As a consequence of the adiabatic invariance of |µ| and Φm as the particle moves into a re-
gion of converging magnetic field lines its transverse kinetic energy W⊥ increases, while its
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parallel kinetic energy W∥ decreases in order to keep |µ| and the total energy constant. Ulti-
mately, if the magnetic field becomes strong enough, the particle velocity in the direction of
increasing field may eventually come to zero and then be reversed. After reversion, the parti-
cle is accelerated towards decreasing magnetic field, while its transverse velocity diminishes.
Thus, the particle is reflected from the region of converging field lines. This phenomenon is
called the magnetic mirror effect and is the basis for one of the primary schemes of plasma
confinement.

Fig. 8: Schematic diagram showing the arrangement of coils to produce two coaxial magnetic mirrors
facing each other, for plasma confinement, and the relative intensity variation of the magnetic
field.

When we consider two coaxial magnetic mirrors as illustrated in figure 8, the charged par-
ticles may be reflected by the magnetic mirrors and travel back and forth in the space be-
tween them, becoming trapped. This trapping region is called a magnetic bottle. However,
the trapping in a magnetic mirror system is not perfect. The effectiveness of this coaxial
mirror system is given by the mirror ratio

Bm

B0
with Bm = B(z =±zm),B0 = B(z = 0), (3.51)

where Bm is the magnetic field density at the point of reflection, where the pitch angle of the
particle is π

2 .
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Now consider a charged particle having a pitch angle α0 at the centre of the magnetic bottle
having a total speed v . The constancy of the magnetic moment leads to

W⊥
B

=
1
2 mv2 sin2α

B
=

1
2 mv2 sin2α0

B0
(3.52)

where α is the particle pitch angle at the position where the magnetic field is B . Thus, at any
point inside the magnetic bottle we have

sin2α(z)

B(z)
= sin2α0

B0
. (3.53)

Suppose now that this particle is reflected at the bottle neck, then α= π
2 and

sin2α0

B0
= 1

Bm
⇒ α0 = arcsin

(√
B0

Bm

)
= arcsin

(v⊥
v

)
0
. (3.54)

Therefore we observe that for a magnetic bottle with fixed mirror ratio Bm/B0 reflections will
only take place for particles with α0 ≥ α0,min reflection. If the pitch angle of the particle at
the centre is less than α0, it will not be reflected and escapes through the ends of the mirror
system.

Fig. 9: The loss cone in a coaxial magnetic mirror system. Particles with an initial pitch angle α0 <
α0,min will escape from the magnetic bottle.

Therefore there is a loss cone with half-angleα0 as shown in figure 9 where particles that have
velocity vectors with a pitch angle falling inside the loss cone are not trapped. Devices that
have no end, with geometries such that the magnetic field lines close on themselves offer
many advantages for plasma confinement. Toroidal geometries have no end, but it turns
out that confinement of a plasma inside a toroidal magnetic field does not provide a plasma
equilibrium situation due to the inhomogeneity of the field. In this case a poloidal magnetic
field is normally superposed on the toroidal field, resulting in helical field lines (as in the
Tokamak). A major problem in most plasma confinement schemes is that instabilities and
small fluctuations from the equilibrium configuration are always present leading to a rapid
escape of particles.

An example of a natural magnetic bottle is the Earth’s magnetic field, which traps charged
particles of solar and cosmic origin. These charged particles trapped in the Earth’s magnetic
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field constitute the so-called Van Allen radiation belts. The electrons and protons that are
trapped in these belts spiral in almost helical paths along the field lines and towards the
magnetic poles, where they are eventually reflected. The particles bounce back and forth
between the poles. Additionally they are also subject to a gradient drift and a curvature drift
in the east-west direction which will be discussed in the next section.

3.7 Curvature drift

So far we have neglected effects associated with the curvature of the magnetic field. As stated
before a B-field with only curvature terms does not satisfy ∇⃗∇∇×××B = 0, so that in practice the
gradient and the curvature drifts will always be present simultaneously. However, both drifts
are to first order approximation independent and can be discussed separately.

We investigate the effects of ∂Bx
∂z and

∂By

∂z on the motion of a small particle. We assume that
these terms are so small that the radius of curvature of the magnetic field lines is much larger
than the cyclotron radius.

Fig. 10: Left: Curved magnetic field line showing the unit vector B̂ along the field line, the principal
normal n̂1 and the binormal n̂2 at any arbitrary point. The local radius of curvature is R.
Right: Relative direction of the particles guiding centre drift velocity vc due to the curvature
of the magnetic field lines.

Let us introduce a local coordinate system gliding along the magnetic field line with the par-
ticles longitudinal velocity v∥. Since this is not an inertial system, a centrifugal force will be
present. This local coordinate system is specified by the orthogonal set of unit vectors B̂, n̂1

and n̂2, where B̂ is along the field line, n̂1 is along the principal normal to the field line and
n̂2 is along the binormal to the curved magnetic field liene, as indicated in figure 10 (left).

The centrifugal force Fc acting on the particle seen from this non-inertial system is given
by

Fc =−
mv2

∥
R

n̂1 (3.55)

26



3.8 Combined gradient-curvature drift Plasma Physics

where R denotes the local radius of curvature of the magnetic field line. From equation (2.23)
the curvature drift associated with this force is

vc = Fc ×B

qB 2
=−

mv2
∥

R q B 2
(n̂1 ×B ). (3.56)

In order to express the unit vector n̂1 in terms of the unit vector B̂ along the magnetic field
line, lets write the element of arc ds along the field line as ds = R dφ. If dB̂ denotes the
change in B due to the displacement ds, then dB̂ ∼ n̂1 and its magnitude is |dB̂ | = |B̂|dφ =
dφ. Consequently

dB̂ = n̂1 dφ ⇒ dB̂

ds
= (B̂ · ∇⃗∇∇)B̂ = n̂1

R
. (3.57)

Incorporating this result into equation (3.55) we obtain

Fc =−mv2
∥ (B̂ · ∇⃗∇∇)B̂ =−2W∥

B 2
[(B̂ · ∇⃗∇∇)B̂]⊥. (3.58)

This force is perpendicular to the magnetic field B , since it is in the −n̂1 direction and gives
rise to a curvature drift velocity

vC =−
mv2

∥
qB 2

[(B̂ · ∇⃗∇∇)B̂]×B =−2W∥
qB 4

[(B̂ · ∇⃗∇∇)B̂]×B . (3.59)

Thus, at each point, the curvature drift is perpendicular to the plane of the magnetic field
line as shown in figure 10 (right).

3.8 Combined gradient-curvature drift

As stated before curvature and gradient drift always appear together and both point in the
same direction, since ∇⃗∇∇B points in opposite direction to Fc . These two drifts can be added
up to form the combined gradient-curvature drift. Thus, using (3.43) and (3.59) we find

vGC = vG +vC =− W⊥
qB 3

(∇⃗∇∇B)×B − 2W∥
qB 4

[(B̂ · ∇⃗∇∇)B̂]×B . (3.60)

When volume currents are not present so that ∇⃗∇∇×××B = 0, we can use ∇⃗∇∇(1
2 B 2

)= B(∇⃗∇∇B) to write
the gradient-curvature drift in a compact form

vGC =− 1

qB 4
(2W 2

∥ +W 2
⊥)∇⃗∇∇

(
1

2
B 2

)
×B . (3.61)

In the Earth’s magnetosphere, near the equatorial plane, both drifts cause the positively
charged particles to slowly drift westward and the negative ones eastward, resulting in an
east to west current, known as the ring current.
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4.1 Electron plasma oscillations

One fundamental plasma property is its tendency to maintain electric charge neutrality on
macroscopic scales under equilibrium conditions. When this charge neutrality is disturbed
by a temporarily imbalance of charge, large COULOMB forces come into play, which tend to
restore macroscopic charge neutrality. Since these forces cannot be naturally sustained, high
frequency plasma oscillations are excited, which enable the plasma to maintain its average
electrical neutrality.

As an example consider a small spherical region inside the plasma and suppose that a per-
turbation in the form of excess of negative charge is introduced in this small region. The
corresponding electric field is radial and points towards the center, forcing the electrons to
move outward. Due to their inertia, the electrons move further than necessary to resume the
state of electrical neutrality. This creates an excess of positive charges causing the electrons
to move inward again. This sequence of outward and inward electron movement results in
electron plasma oscillations. Since the ions (due to their higher mass) are unable to follow
the rapidity of the electron oscillations, their motion is often neglected.

Now we study the characteristics of the electron plasma oscillations using the cold plasma
model in which the particle thermal motion and pressure gradient forces are not taken into
account. We neglect the ion motion and assume a small electron density perturbation such
that

ne (r , t ) = n0 +n′
e (r , t ), (4.1)

where n0 is a constant number density and |n′
e | ≪ n0. Similarly we assume that E (r , t ) and

the average electron velocity ue (r , t ) are first-order perturbations. We can derive the plasma
frequency ωp using the linearized continuity and momentum equations

∂

∂t
n′

e (r , t )+n0∇⃗∇∇···ue (r , t ) = 0 (4.2)

∂

∂t
ue (r , t ) =− e

me
E (r , t ). (4.3)

Considering singly charged ions the total charge density is simply given by the perturbation
value of the electron number density n′

e if we assume constant and uniform ions. Therefore,
GAUSS law states

∇⃗∇∇···E (r , t ) = ϱ(r , t )

ε0
=− e

ε0
n′

e (r , t ). (4.4)

We now try to solve this set of equations for the electron number density by taking the diver-
gence of (4.3) and using (4.2) to substitute for ∇⃗∇∇···ue , we obtain

∂2

∂t 2
n′

e (r , t )− en0

me
∇⃗∇∇···E (r , t ) = 0

(4.4)⇒ ∂2

∂t 2
n′

e (r , t )+ω2
p n′

e (r , t ) = 0, where ωp =
√

n0e2

meε0
(4.5)
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is the electron plasma frequency we already introduced in equation (1.8). We observe that
n′

e (r , t ) varies harmonically in time leading to the general solution

n′
e (r , t ) = n′

e (r )exp
(−iωp t

)
. (4.6)

In fact, all first-order perturbations have a harmonic time variation at the plasma frequency.
To justify this statement its convenient to start with the assumption that all first-order quan-
tities vary harmonically in time with exp(−iωt ). Equations (4.2) and (4.3) become, in this
case

n′
e =− i

ω
n0∇⃗∇∇···ue , ue =− ie

ωme
E (4.7)

=− n0e

ω2me
∇⃗∇∇···E . (4.8)

Substituting this expression into equation (4.4) yields(
1−

ω2
p

ω2

)
∇⃗∇∇···E = 0, (4.9)

which shows that nontrivial solutions require ω = ωp . Therefore, all the perturbations vary
harmonically in time at the electron plasma frequency. Further, for all variables there is no
change in phase from point to point implying the absence of wave propagation. The oscil-
lations are therefore stationary. Also ue ∥ E shows that the electron velocity is in the same
direction as the electric field, so that these oscillations are longitudinal.

The electron plasma oscillations are also electrostatic in character. For this we consider
FARADAY’s and AMPÈRE’s law with harmonic time variation

∇⃗∇∇×××E = iωB (4.10)

∇⃗∇∇×××B =µ( j − iωε0E ). (4.11)

where the electric current density is given by

j =−en0ue
(4.7)= in0e2

ωme
E ⇒∇⃗∇∇×××B =− iω

c2
εr E (4.12)

where we have defined a relative permittivity by

εr = 1−
ω2

p

ω2
. (4.13)

For the electron plasma oscillations we haveω=ωp so that εr = 0 and (4.12) is just ∇⃗∇∇×××B = 0.
Since the curl of the gradient of any scalar function vanishes we may write

B = ∇⃗∇∇ψ ⇒∇⃗∇∇···
(
∇⃗∇∇ψ

)
=∆ψ= 0, (4.14)

because ∇⃗∇∇ ··· B = 0. The only solution of this equation, which is not singular and finite at
r | <∞ is ψ= constant, so that B = 0. Hence there is no magnetic field associated with these
space charge oscillations.

In summary, the electron plasma oscillations are stationary, longitudinal and electrostatic.
They are also referred to as Langmuir oscillations. When the effect of pressure gradient forces
is included in the equation of motion (4.3), these oscillations become propagating distur-
bances, commonly known as Langmuir waves.
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4.2 Debye shielding

To examine the mechanism by which the plasma strives to shield its interior from a disturb-
ing electric field consider a plasma whose equilibrium state is perturbed by an electric field
due to an external charged particle. We assume this test particle to have a positive charge +Q
and choose a spherical coordinate system whose origin coincides with the position of the
test particle. We want to determine the electrostatic potential Φ(r ) near the test charge due
to combined effects of the test charge and the distribution of charged particles surround-
ing it. The number densities of electrons ne (r ) and of the ions ni (r ) will be slightly different
near the origin, whereas at large distances we have ne (∞) = ni (∞) = n0. This is a steady-state
problem under the action of a conservative electric field

E (r ) =−∇⃗∇∇Φ(r ). (4.15)

Assuming that electrons and ions have the same temperature their distributions are de-
scribed by

ne (r ) = n0 exp

(
eΦ(r )

kB T

)
, ni (r ) = n0 exp

(
−eΦ(r )

kB T

)
. (4.16)

The total electric charge density ϱ(r ) including the test charge Q can be expressed as

ϱ(r ) =−e[ne (r )−ni (r )]+Qδ(r )

=−en0

[
exp

(
eΦ(r )

kB T

)
−exp

(
−eΦ(r )

kB T

)]
+Qδ(r ). (4.17)

Using POISSON’s equation ε0∇∇∇2Φ(r ) =−ϱ(r ) we find

∇∇∇2Φ(r )− en0

ε0

[
exp

(
eΦ(r )

kB T

)
−exp

(
−eΦ(r )

kB T

)]
=−Q

ε0
δ(r ) (4.18)

which allows the evaluation of the electrostatic potential. In order to proceed analytically,
we assume now that the perturbing electrostatic potential is weak so that the electrostatic
energy is much smaller than the mean thermal energy

eΦ(r ) ≪ kB T. (4.19)

Under this condition we can expand the exponentials into a first-order TAYLOR series expan-
sion which simplifies (4.18) to

∇∇∇2Φ(r )− 2

λ2
D

Φ(r ) =−Q

ε0
δ(r ) (4.20)

where λD denotes the DEBYE length

λD =
√
ε0kB T

n0e2
= 1

ωp

√
kB T

me
∼ vth

ωp
. (4.21)

The product of plasma frequency and DEBYE length is proportional to the thermal velocity
vth. Since the problem has spherical symmetry, the electrostatic potential depends only on
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the radial distance r measure from the position of the test particle. Thus, using spherical
coordinates we can write (4.20) (for r ̸= 0) as

1

r 2

d

dr

[
r 2 d

dr
Φ(r )

]
− 2

λ2
D

Φ(r ) = 0 (r ̸= 0). (4.22)

For an intuitive solution we note that for an isolated particle in free space, the electric po-
tential is simply

Φc (r ) = 1

4πε0

Q

r
⇒ Φ(r ) =Φc (r )F (r ) = Q

4πε0

F (r )

r
. (4.23)

In the very close proximity of the test particle the electrostatic potential should be the same
as in free space. Hence we may modify the solution with a function lim

r→0
F (r ) = 1. Fur-

thermore, the electrostatic potential has to vanish at infinity. Substituting (4.23) into (4.22)
yields

d2

dr 2
F (r ) = 2

λ2
D

F (r ) ⇒ F (r ) = A exp

(
−
p

2r

λD

)
. (4.24)

The minus sign in the exponent was chosen such that Φ(r ) vanishes for large distances r .
Therefore the solution of (4.22) is

Φ(r ) = 1

4πε0

Q

r
exp

(
−
p

2r

λD

)
. (4.25)

This result is commonly know as the Debye potential, since this non-rigorous derivation was
first presented by DEBYE and HUCKEL in their theory of electrolytes. It shows that Φ(r ) be-
comes much smaller than the ordinary COULOMB potential once r exceeds the Debye length.
Hence, we can say that charge neutrality is significantly disturbed only over r ≤ λD and for
distances larger than λD the external charge is effectively shielded (neutralized).

An important point to be noted in the result is that, for r → 0, the DEBYE potential becomes
very large and the assumption eΦ(r ) ≪ kB T is unlikely to be fulfilled. To verify the validity of
this approximation, note that using (4.25) with Q = e we have

eΦ

kB T
= e2

4πε0r kB T
exp

(
−
p

2r

λD

)
= λD

3ND

1

r
exp

(
−
p

2r

λD

)
(4.26)

where ND is the number of electrons inside the DEBYE sphere. Since ND is very large for
virtually all plasmas, it is evident that the ration given in (4.26) is much less than one, except
when r is less than λD /ND . Therefore, the DEBYE potential is consistent with our approxi-
mation if we restrict to distances greater than λD /ND .

Finally we note that in the derivation of the DEBYE potential it is usual to ignore ion motion
and assume a constant ion number density. In this case the factor of 2 in equation (4.20)
disappears and the expression for the DEBYE potential becomes

Φ(r ) = 1

4πε0

Q

r
exp

(
− r

λD

)
. (4.27)
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4.3 Electromagnetic waves in a plasma

We begin with a brief review of light waves in vacuum without static magnetic fields (only
first order-terms B ). The relevant MAXWELL equations are

∇⃗∇∇×××E =− ∂

∂t
B , c2∇⃗∇∇×××B = ∂

∂t
E (4.28)

since in a vacuum j = 0. Taking the curl of AMPÈRE’s law and substituting the time derivative
of FARADAY’s law we have

c2∇⃗∇∇××× (∇⃗∇∇×××B ) = ∇⃗∇∇××× Ė =−B̈ . (4.29)

Assuming plane waves varying as exp(i(kx −ωt )) we have

−c2k × (k ×B ) =−c2[k(k ·B )−k2B
]=ω2B . (4.30)

Since k ·B =−i∇⃗∇∇···B = 0 the result is

ω2 = k2c2 dispersion relation in vacuum. (4.31)

In a plasma we must add a term j
ε0

to account for currents due to first-order charged particle
motions. The time derivative of AMPÈRE’s law then becomes

c2∇⃗∇∇××× Ḃ = 1

ε0

∂ j

∂t
+ Ë (4.32)

while the curl of FARADAY’s law is

∇⃗∇∇×××
(
∇⃗∇∇×××E

)
= ∇⃗∇∇

(
∇⃗∇∇···E

)
−∇∇∇2E =−∇⃗∇∇××× Ḃ . (4.33)

Eliminating ∇⃗∇∇××× Ḃ by (4.32) and assuming a plane wave dependence results in

−k(k ·E )+k2E = iω

ε0c2
j + ω2

c2
E . (4.34)

By transverse waves we mean k ·E = 0, so this becomes

(ω2 − c2k2)E =− iω

ε0
j . (4.35)

If we consider light waves or microwaves, they will be of such high frequency that the ions
can be considered as fixed. The current j is then entirely caused by electron motion j =
−n0eve . From the linearized equation of motion (first-order approximation) we have for a
cold plasma

m
∂ve

∂t
=−eE ⇒ j =− n0e2

imeω
E . (4.36)

Equation (4.35) can now be written as

(ω2 − c2k2)E = n0e2

ε0me
E =ω2

p E . (4.37)

Then the modified dispersion relation for electromagnetic waves propagating in a plasma
is

ω2 = k2c2 +ω2
p . (4.38)

We see that the vacuum relation is modified by a term ω2
p reminiscent of plasma oscilla-

tions.
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Phase and group velocities

The phase velocity of a light wave in a plasma is greater than the velocity of light

vph = ω

k
= c

ωp
c2k2

= c
ω

ω2 −ω2
p
= c

1√
1−

ω2
p

ω2

=:
c

η
> c. (4.39)

Here we introduced the refractive index of a plasma η as

η=
√

1−
ω2

p

ω2
refractive index. (4.40)

However, the group velocity vgr cannot exceed the velocity of light. We find

vgr = ∂ω

∂k
= kc2√

ω2
p +k2c2

= kc2

ω
= c η< c. (4.41)

For frequenciesω<ωp the refractive index becomes imaginary. This means the electromag-
netic wave can no longer propagate in the plasma, it is exponentially damped. Therefore
only waves withω>ωp can propagate in the plasma. For a givenωwe can estimate a critical
density ncr as

n0 < ω2ε0me

e2
= ncr. (4.42)

Electromagnetic waves can only propagate in plasmas with n0 < ncr. We can express the
refractive index in terms of electron densities also as

η=
√

1−
ω2

p

ω2
=

√
1− ne

ncr
. (4.43)
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5 The pinch effect

In this chapter we present a detailed treatment of plasma confinement for the special case
in which the confinement is produced by an azimuthal self-magnetic field, due to an axial
current in the plasma in êz direction.

Consider a cylindrically symmetric plasma with maximum radius R and an axial current den-
sity

j (r ) =−ene (r )u′
e (r ) = jz(r )êz (5.1)

and a resulting azimuthal magnetic flux density B = Bϕ(r )êϕ as depicted in figure 11.

Fig. 11: Pinch configuration in which a magnetoplasma is confined by azimuthal magnetic fields gen-
erated by axial currents flowing along the plasma column.

The LORENTZ force j ×B acting on the plasma, forces the column to contract radially. This
radial constriction of the plasma column is known as the pinch effect. In this case the isobaric
surfaces for constant pressure p are concentric cylinders.

As the plasma is compressed, the number density and the temperature increase. The plas-
mas kinetic pressure

pe (r ) = ne (r )kB Te and pi (r ) = ni (r )kB Ti (5.2)

counteracts the constriction of the plasma column, whereas the magnetic force acts to con-
fine the plasma. When these counteracting forces are balanced, a steady-state condition
establishes in which the plasma is mainly confined the radius R. This situation is referred to
as the equilibrium pinch. When the column radius changes with time, the situation is known
as dynamic pinch.

5.1 Equilibrium pinch

For simplicity, the current density, magnetic field and plasma kinetic pressure are assumed
to depend only on the distance from the cylinder axis. We do not observe changes with
time due to steady-state conditions. We only consider the radial component of the magnetic
pressure

dp(r )

dr
=− jz(r )Bϕ(r ). (5.3)
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Inside a cylinder of general radius r the total enclosed current Iz(r ) is

Iz(r ) =
rˆ

0

jz(r ′)2πr ′ dr ′ ⇒ dIz(r )

dr
= 2πr jz(r ). (5.4)

AMPÈRE’s law in integral form relates Bϕ(r ) to the total enclosed current

Bϕ = µ0

2πr
Iz(r ) = µ0

r

rˆ

0

jz(r ′)r ′ dr ′ . (5.5)

If the conducting fluid lies almost entirely inside r = R, the magnetic flux density outside the
plasma is

Bϕ(r ) = µ0I0

2πr
with I0 =

R̂

0

jz(r )2πr dr (5.6)

where I0 is the total current flowing inside the cylindrical plasma column. Using the expres-
sions for Bϕ(r ) (5.6) and jz(r ) (5.4) the magnetic pressure has to obey

dpmag

dr
=− µ0

4π2r 2
Iz(r )

dIz(r )

dr

4π2r 2 dpmag

dr
=− d

dr

(
1

2
µ0I 2

z (r )

)
. (5.7)

If we now integrate this equation from 0 to r = R using integration by parts, we obtain

4π2r 2p(r )

∣∣∣∣R

0
−4π

R̂

0

2πr p(r )dr =−1

2
µ0I 2

0 , (5.8)

where I0 is the total current flowing through the entire cross section. Considering that the
plasma pressure is zero for r ≥ R and finite for 0 ≤ r < R, the first term of (5.8) vanishes.
Therefore we find that

I 2
0 = 8π

µ0

R̂

0

2πr p(r )dr

= 8π

µ0
kB (Te +Ti )

R̂

0

2πn(r )dr , (5.9)

if the partial pressures of electrons and ions are governed by (5.2) with

p(r ) = pe (r )+pi (r ) = n(r )kB (Te +Ti ). (5.10)

We can rewrite the result of I 2
0 as

I 2
0 = 8π

µ0
kB (Te +Ti )Nl BENNET-relation , (5.11)
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where we introduced the number of particles per unit length of the plasma column as Nl

Nl =
R̂

0

2πn(r )dr . (5.12)

The BENNET-relation gives the total current that must be discharged through the plasma
column in order to confine a plasma at a specific temperature and given number of particles
per length Nl . Usually the current required for the confinement of hot plasmas is very large.
As an example suppose that Nl = 1019 1

m and a plasma temperature (Te+Ti ) = 108 K. It follows
that the required current I0 is of the order of 106 A.

In order to obtain the radial distribution of p(r ) in terms of Bϕ(r ), it is convenient to start

from (5.3) and proceed differently. From AMPÈRE’s ∇⃗∇∇×××B =µ j we have in cylindrical coordi-
nates

1

r

d

dr

(
r Bϕ(r )

)=µ0 jz(r )

1

µ0

dBϕ(r )

dr
+ 1

µ0

Bϕ(r )

r
= jz(r ). (5.13)

If we substitute this result for jz(r ) into (5.3) this yields

dp(r )

dr
=− 1

2µ0r 2

d

dr

(
r 2B 2

ϕ(r )
)

p(r ) = p(0)− 1

2µ0

rˆ

0

1

r 2

d

dr

(
r 2B 2

ϕ(r )
)

dr . (5.14)

In particular, since for r = R we have p(R) = 0 we can determine p(0) and substitute into (5.14)

p(r ) = 1

2µ0

R̂

r

1

r 2

d

dr

(
r 2B 2

ϕ(r )
)

dr . (5.15)

The average pressure p̄ inside the cylinder can be related to the total current I0 without
knowing the detailed radial dependence. It is defined by

p̄ := 1

πR2

R̂

0

2πr p(r )dr =− 1

R2

R̂

0

r 2 dp(r )

dr
dr , (5.16)

where in the second step we used integration by parts (the integrated term is zero because

p(R) = 0). Replacing dp
dr using equation (5.14) we get

p̄ =
B 2
ϕ(R)

2µ0
= µ0I 2

0

8π2R2
. (5.17)

This result shows that the average kinetic pressure in the equilibrium is balanced by the mag-
netic pressure at the boundary.
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Examples

First we want to consider the case in which the current density is constant for r < R. Taking
jz = I0

πR2 we obtain with (5.6)

Bϕ(r ) = µ0I0

πR2r

rˆ

0

dr = µ0I0

2πR2
r (r < R). (5.18)

Substituting this result into (5.15) we obtain a parabolic pressure dependence versus ra-
dius

p(r ) = 1

2µ0

R̂

r

1

r 2

d

dr

(
µ2

0I 2
0 r 2

4π2R4

)
dr = µ0I 2

0

4π2R2

(
1− r 2

R2

)
. (5.19)

Note that the axial pressure p(0) is twice the average pressure p̄ given in (5.17). The radial
dependence of the various quantities is shown in figure 12 (left).

Fig. 12: Left: Radial dependence of Bϕ(r ) and plasma pressure for constant current density jz (r ).
Right: Radial dependence of Bϕ(r ) and plasma pressure with a surface current density jz (r ).

Another radial distribution of jz(r ) is also of interest in the investigation of the equilibrium
pinch, in which the current density is confined to a very thin layer on the surface of the col-
umn. This model is appropriate for a highly conduction fluid. This surface current density
can (in the case of perfect conduction) be conveniently represented by a DIRAC delta func-
tion. In this case there is no magnetic field inside the plasma and we only have nonzero
Bϕ(r ) for r > R. The magnetic flux density is given by

Bϕ = µ0I0

2πr
(r > 0), (5.20)

where I0 is the total axial current. Therefore from (5.14) we have

p(r ) = p(0) (0 < r < R) (5.21)

so that the plasma kinetic pressure is constant inside the cylindrical column and equal to the
average value given in (5.17). The radial dependence is sketched in figure 12 (right). Thus,
for a perfectly conduction plasma, the magnetic flux density vanishes inside the column and
falls off as 1

r outside the column. The plasma kinetic pressure is constant inside and zero
outside. The pinch effect can be thought of as due to an abrupt build-up of the magnetic

pressure
B 2
ϕ

2µ0
in the region external to the plasma column.
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