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1 Introduction

1.1 Why particles and fields?

This course is meant to be a preparatory course for an in depth lecture course on quantum
field theory (QFT). In fact, QFT has become the language of modern physics. Most promi-
nently, QFT describes the physics of elementary particles and their interactions at the most
fundamental level that is currently accessible to observations in the laboratory (e. g. at collid-
ers) or in astrophysical or cosmological data. QFT even has the potential to describe systems
to arbitrarily short-distance or arbitrarily high energy scales (in contrast to classical mechan-
ics, electrodynamics or quantum mechanics). Moreover, QFT provides also for useful tools
for the description of condensed matter systems, many-body physics, critical phenomena,
statistical systems, phase transitions, etc.
It is therefore not astonishing that QFT exhibits a deep level of structural and technical com-
plexity, challenging both students and teachers in a compact lecture course.

The purpose of this course hence is to remove a large part of this complexity by ignoring
quantization. The remaining body of classical field theory still offers a comprehensive play-
ground where many concepts and actually real physics can be learned and understood.
Though the mathematics of this course deals with classical field theory, the goal (behind the
horizon) is QFT and its application to particle physics. Hence, some applications and dis-
cussions center around elementary particle physics. As QFT supersedes the point-particle
concept, the word particle in the title does not allude to classical point particles, but to the
modern understanding of particles as quantized excitations of fields. As we stay with the
realm of classical physics in this course, a particle should be thought of as a classical excita-
tion of a field, such as a localized propagating wave.

1.2 Examples of classical field theories

In classical field theory, each point in spacetime x ≡ (t , x) is associated with a function

x →φ(x). (1.1)

Depending on the system the function φ could be a real or a complex number or an N -tuple
of such numbers φa , a = 1, . . . , N . Examples are given by the electrostatic potential ϕ(x) ∈ R
in classical electrostatics or the vector potential A(x) consisting of three components giving
rise to a magnetic field B = ∇⃗∇∇××× A(x). We typically assume φ(x) to be sufficiently smooth and
differentiable (e. g. φ ∈C 2) such that its dynamics can be governed by a differential equation,
the field equation or equation of motion (EOM).

This abstract notion is already familiar from classical electrodynamics, being a paradigmatic
example for a classical field theory. The field equations for the electric and magnetic field
components, E (x) and B (x), are given by the MAXWELL equations, which in vacuum read

∇⃗∇∇···E = 0

∇⃗∇∇···B = 0

∇⃗∇∇×××B = ∂E

∂t

∇⃗∇∇×××E + ∂B

∂t
= 0.

(1.2)
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1.2 Examples of classical field theories Particles and Fields

Here, we have already use the convention c = 1 (i. e. all velocity-like quantities are measured
in fractions of light speed, or lengths are measured by the time that light takes to propagate
this distance).

Mathematically, the field equations are (coupled) partial differential equations (PDEs), the
solution of which requires suitable boundary conditions or/and initial data.

The Maxwell equations form a rather peculiar example, as the information encoded in the six
functions E1,2,3(x),B1,2,3(x) can also be parametrized by the above mentioned four auxiliary
functions of the electrostatic potential ϕ(x) and the vector potential A(x), where

B (x) = ∇⃗∇∇××× A(x),

E (x) =−∇⃗∇∇ϕ(x)− ∂A(x)

∂t
.

(1.3)

Inserting (1.3) into (1.2), and using ∇⃗∇∇×××∇⃗∇∇ϕ= 0 and ∇⃗∇∇ ··· (∇⃗∇∇××× A) = 0 (for smooth ϕ and A), the
second line of (1.2) is automatically satisfied, while the first line boils down to

∆ϕ+ ∂

∂t

(
∇⃗∇∇··· A

)
= 0

∆A − ∂2 A

∂t 2
−∇⃗∇∇

(
∇⃗∇∇··· A + ∂ϕ

∂t

)
= 0

(1.4)

forming four PDEs for the for unknown fields ϕ(x), A(x).

This parametrization in terms of the potentials is even more peculiar, as the choice of ϕ and
A is not unique. For instance, if ϕ and A are shifted according to

ϕ(x) →ϕ′(x) =ϕ(x)− ∂

∂t
λ(x)

A → A′(x) = A(x)+∇⃗∇∇λ(x)
(1.5)

with an arbitrary function λ(x) ∈ C 2, the electric and magnetic fields in (1.3) remain the
same. While E and B can be measured in terms of forces acting on (moving) charged parti-
cles, the values of φ(x) and A(x) at a given point x can be shifted by (1.5) to any value and
thus have no locally observable meaning.

This invariance under local shifts (1.5) is called a gauge symmetry and characterizes a very
special and important class of field theories. For our present purpose, it is useful to choose
λ(x) in such a way that ϕ′ and A′ satisfy the following auxiliary condition

∇⃗∇∇··· A′+ ∂

∂t
ϕ′ = 0 (Lorenz gauge). (1.6)

If so, the field equations (1.4) for ϕ′ and A′ simplify to

∆ϕ′− ∂2ϕ′

∂t 2
= 0

∆A′− ∂2 A′

∂t 2
= 0,

(1.7)
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or simply □ϕ′ = 0,□A′ = 0, where □ = ∂2

∂t 2 −∇∇∇2 (d’Alembert operator). Equations (1.7) are
wave equations for all four field functions which hence admit plane wave solutions:

ϕ′, A′ ∼ e−iωt+ik ·x , with ω2 = k2 (1.8)

(for complexified fields, or Re(. . .) for real fields).

In addition to gauge invariance, MAXWELL’s equations also have an invariance with respect
to the choice of coordinate systems. The corresponding invariance is a relativistic invari-
ance, and the corresponding transformations between coordinate systems moving relative
to each other at constant speed β = v

c ≡ v are the LORENTZ transformations. For instance,
if two coordinate systems move relative to each other along their common x direction, the
LORENTZ transformation reads

t ′ = γ(t −βx)

x ′ = γ(x −βt )

y ′ = y

z ′ = z

γ= 1√
1−β2

. (1.9)

Summarizing the spacetime coordinates in a contravariant 4-vector xµ = (t , x, y, z). This
transformation can be written in a matrix form

xµ
′ =Λµνxν (1.10)

where Λ=


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

. (1.11)

Of course, by suitably applying rotation matrices, x ′ =Rx ,RTR =1,R ∈ SO(3), the LORENTZ

transformations generalize to boosts along any other directionβ, as well as to coordinate sys-
tems spatially rotated relative to each other.

Recall that (1.9) follows from EINSTEIN’s postulate that the wave front of a flash of light start-
ing at a common origin of the coordinate systems propagates at the same speed as measured
in both systems. The position of such a spherical wave front after time t is at

0 = t 2 − (x2 + y2 + z2), 0 = t ′2 − (x ′2 + y ′2 + z ′2) (1.12)

respectively. This suggests to introduce the MINKOWSKI metric

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, (1.13)

to write the propagation distance of the wave front in both systems as

0 = xµgµνxν = xµ
′
gµνxν

′
. (1.14)
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Using (1.10), we get

xµgµνxν =ΛµκxκgµνΛ
ν
λxλ

µ⇔κ=
ν⇔λ

xµΛκµgklΛ
λ
νxν. (1.15)

Note that in this context xµ is not just any position in spacetime but a vector specifying the
distance of the wave front from the origin. From (1.15) we read off that LORENTZ transfor-
mationsΛ of such vectors satisfy

gµν = gκλΛ
κ
µΛ

λ
ν. (1.16)

It is straightforward to verify that (1.11) satisfies this condition.

More generally, we call any 4-by-4 matrixΛ that satisfies (1.16) for the metric (1.13) a Lorentz
transformation. Hence, (1.16) has the same status for LORENTZ transformations, as RT R =1
(δi j = δkl R

k
i R

l
j ) has for rotations. The corresponding matrix group is SO(3,1). We will

discuss this group in more detail below.

Any 4-tuple vµ,µ= 0,1,2,3, that transforms under changes of the LORENTZ system as

vµ =Λµνvν (1.17)

is called a LORENTZ 4-vector. Correspondingly, objects T µ1µ2...µn that transform as

T µ1µ2...µ′n =Λµ1
ν1
Λ
µ2
ν2

. . .Λµn
νn

T ν1ν2...νn (1.18)

are called LORENTZ tensors of rank n. It is also useful to introduce covariant vectors by

xµ := gµνxν = (t ,−x). (1.19)

With this notation, the light-front position discussed above can be written as 0 = xµxµ =
x ′
µxµ

′
, which makes it obvious that expressions with pair-wise contracted upper and lower

indices are LORENTZ invariant. For instance, the argument of the plane wave in (1.8) can be
written as

−i(ωt −k ·x) =−ikµxµ, where kµ = (ω,k). (1.20)

Remark: The fact that ω and k indeed transform as components of a 4-vector is a manifestation of

the relativistic DOPPLER effect.

Hence, the plane wave form of (1.8) is a relativistic invariant. This translates into the invari-
ance of the corresponding wave operator

□= ∂2

∂t 2
−∇∇∇2. (1.21)

The trivial fact that

∂

∂xµ
xν =

{
1 for µ= ν
0 otherwise

∂

∂xµ
xµ = 4 (1.22)
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holds in any LORENTZ frame, suggests to interpret ∂
∂xµ as a covariant vector: ∂µ

∂µxµ = 4, ∂µ =
(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (1.23)

The corresponding contravariant vector operator is

∂µ = gµν∂ν, ∂µ =
(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
, (1.24)

where gµν denotes the inverse of gµν. Obviously, we have (g−1)µν = gµν component-wise.
We write

g−1g =1, or in components gµνgνκ = δµκ. (1.25)

With this notation we have

□= ∂2

∂t 2
−∇∇∇2 = ∂µ∂µ (1.26)

which makes LORENTZ invariance manifest.

Lorentz invariance of Maxwells equations

To conclude the discussion of classical electrodynamics, the form invariance of MAXWELL’s
equations under LORENTZ transformations becomes manifest by noticing thatϕ(x) and A(x)
also transform as components of a 4 vector

Aµ(x) = (ϕ(x), A(x)). (1.27)

The LORENZ gauge condition (1.6) is hence LORENTZ invariant

∂µAµ = 0. (1.28)

From (1.3) it is clear that E and B cannot be arranged in 4-vectors. Instead their components
can be arranged into a LORENTZ tensor, the field strength tensor

Fµν = ∂µAν−∂νAµ

(F )µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


µν

,
(1.29)

such that the first line of MAXWELL’s equations read

∂µFµν = 0. (1.30)

This is a set of 4 equations, ν = 0,1,2,3, that transform as a 4-vecotr under LORENTZ trans-
formations. In order to write the second line of (1.2) into 4-notation, it is useful to introduce
the MINKOWSKIAN analogue of the Levi-Civita symbol

εµνκλ =


+1 for even permutations µ= 0,ν= 1,κ= 2,λ= 3

−1 for odd permutations

0 if two indices are equal

. (1.31)
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1.2 Examples of classical field theories Particles and Fields

This allows to introduce the dual field strength tensor

F̃µν = 1

2
εµνκλFκλ, where Fκλ = gκµFµνgνλ. (1.32)

More explicitly we can write

(F̃ )µν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


µν

. (1.33)

By construction, we have

0 = ∂µF̃µν = 1

2
εµνκλ︸ ︷︷ ︸

antisymmetric

∂µ(∂κAλ−∂λAκ)︸ ︷︷ ︸
symmetric

(1.34)

which is also called the Bianchi identity, which reproduces the second line of (1.2). We close
this section on electrodynamics by noting that the whole formalism can be generalized to
non-vanishing charges and currents. Combining the charge density ϱ and the current den-
sity j into a 4-vector jµ = (ϱ, j ), the MAXWELL equation (1.30) reads (in HEAVISIDE-LORENTZ

units)

∂µFµν = jν, (1.35)

while (1.34) remains as it is. Since Fµν (as well as F̃µν) is antisymmetric by construction,
Fµν =−Fµν, current conservation is manifest:

0 = ∂ν∂µFµν = ∂ν jν = ∂

∂t
ϱt +∇⃗∇∇··· j . (1.36)

Relativistic point particle

Classical electrodynamics is obviously an example for a classical field theory with a high
degree of structure both due to gauge symmetry as well as the vector and tensor nature of
the field variables.

With this insight, we can guess a much simpler field theory that satisfies relativistic invari-
ance:

□φ(x) = 0, (1.37)

where φ(x) is a scalar field that transforms trivially under LORENTZ transformations φ(x) →
φ′(x ′) ≡φ(x). In fact, (1.37) is identical to the KLEIN-GORDON equation

(□+m2)φ(x) = 0 (1.38)

for the special case of vanishing mass m. Here we use also the convention that ℏ= 1.
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From our advanced quantum mechanics course, we know that the KLEIN-GORDON equation
also admits plane wave solutions,

φ∼ e−i(ωt−k ·x) = e−ikµxµ (1.39)

where kµkµ = m2. (1.40)

The last equation is equivalent to

ω2 = k2 +m2 (1.41a)

which according to our conventions is identical to

E 2 = p2c2 + (mc2)2, (1.41b)

being the relativistic energy-momentum relation (dispersion relation) of a relativistic point-
particle. Of course, in the quantum mechanics course, the KLEIN-GORDON equation has
been motivated by the relativistic dispersion relation (1.41b) with the wave equation (1.38)
being a consequence of the correspondence principle E → i∂t , p →−i∂x .

From the viewpoint of field theory, the logic is reversed: We have written down the simplest
relativistic field equations in (1.37) and (1.38) which turn out to support wave excitations
that obey the dispersion relation of a relativistic point particle.

Remark: In fact, leaving relativity and quantum mechanics aside, the KLEIN-GORDON equation also

appears in continuum mechanics: it describes the propagation of longitudinal waves of (the contin-

uum limit of) a chain of net of oscillators with φ(x) corresponding to the amplitude of an oscillator

at point x. The speed c is related to the spring constants, and m is a measure for a harmonic force

pulling each oscillator back to its rest position.

Comparing the dispersion relation (1.41b) to that found for waves in electrodynamics in (1.8),
the latter appear to correspond to massless relativistic particles satisfyingω2 = k2 or E = |p|c,
the quantized version of which will be the photons.

Having obtained the quantum mechanical KLEIN-GORDON equation from field theory con-
siderations, it is a perfectly legitimate viewpoint, to interpret even the SCHRÖDINGER equa-
tion (at best mathematically) as a wave equation of a classical field theory,

i∂tΨ(x) =− 1

2m
∇∇∇2Ψ(x)+V (x)Ψ(x). (1.42)

Obviously, the SCHRÖDINGER equation is not invariant under LORENTZ transformations; in-
stead it is GALILEI invariant (as NEWTONs classical mechanics). Correspondingly, its excita-
tions give rise to dispersion relations of a non-relativistic point particle.

One may justifiably object that there is still a clear distinction between field theories such
as electrodynamics on the one hand side, and quantum mechanical field equations on the
other hand side, because the quantum mechanical wave functions have a probabilistic in-
terpretation, P (x) = |Ψ(x)|2. First, one needs to square the amplitude, and second, the result
is a probability not a fully deterministic prediction for a single measurement.
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However, this distinction becomes less meaningful, if we keep in mind that a typical ob-
servable for electromagnetic waves is the intensity, I ∼ |E |2, |B |2, which is also related to the
square of the field amplitude.

Moreover, when we approach the regime of very small intensities (and system sizes with
actions of the order S ∼ ℏ), we expect quantum effects to set in. Interestingly, it is not
MAXWELL’s equations which break down in this regime, but it is the interpretation of the
amplitudes that breaks down: the intensity then is related to the probability of measuring
radiation (a photon).

An important difference between the quantum mechanical and the field theory viewpoint is
the following: In QM, we first lift space coordinates and momenta to operators x , p → x̂, p̂
with non-trivial commutation relations, and only later when we formulate the SCHRÖDINGER

equation in position space, the coordinates become numbers again. In this manner, there is a
fundamental difference between space and time, as the latter t always remains a parameter.
By contrast, both time and space remain parameters in field theory. This holds also true in
QFT, where (t , x) remain parameters. Instead, the fields themselves are lifted to operators.

All of the examples of field theories mentioned so far are special in the sense that their field
equations are linear in the amplitude φ(x) (or Fµν, Aµ,Ψ). As a consequence the superposi-
tions principle holds: if two solutions φ1(x) and φ2(x) exist, then also

φ(x) =αφ1(x)+βφ2(x) (1.43)

is a solution (with α,β=const.).

This is generally no longer true if we consider non-linear theories. A famous example is
EINSTEIN’s theory of general relativity, where the field variable is now a dynamical metric
gµν(x) and the field equation reads (in vacuum without cosmological constant)

Rµν− 1

2
Rgµν = 0. (1.44)

Here, the RICCI tensor Rµν and RICCI scalar R depend in a nonlinear way on gµν (and its
inverse) and therefore its derivatives.
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1.3 The action principle for classical field theories

All of the above given examples for field equations can be derived from an action principle
in much the same way as HAMILTON’s principle gives rise to equations of motion in classical
mechanics. The corresponding actions turn out to be of the form

S[φ] =
ˆ

V
d4x L (φ,∂µφ). (1.45)

Here, the action S is considered to be a functional of the fieldφ. The integration measure d4x
over spacetime is LORENTZ invariant, as the Jacobian of the transformation, d4x → d4x ′ =
|detΛ|d4x, involves the modulus of the determinant of Λ, which by virtue of (1.16) satisfies
(detΛ)2 = 1. If L transforms as a scalar, S is a LORENTZ invariant number for any field φ.
The integration volume V may be finite or extend over full MINKOWSKI space. Since (1.45)
involves a volume integration, L is called the Lagrange density. We assume it to be a function
of the field φ and its first derivative ∂µφ, since the above given field equations are of second
order. As in classical mechanics, we could also allow for higher derivatives at the expense of
higher-order field equations.

We look for those field configurations that extremize the action S. As in classical mechanics,
we assume that the general field can be written as

φ(x,α) =φ(x)+αη(x) (1.46)

where φ(x) is an arbitrary field variation that vanishes on the boundary of V :

η(x)

∣∣∣∣
x∈∂V

= 0 (1.47)

(i. e. if the general field has to satisfy specific boundary conditions on ∂V , these conditions
are completely carried by φ(x), i. e. by the extremizing field).

With these assumptions, S has to be stationary at α= 0

0 = ∂S[φ]

∂α

∣∣∣∣
α=0

=
ˆ

V

d4x

(
∂L

∂φ
η+ ∂L

∂(∂µφ)
∂µη

)
α=0

.

Integrating the second term by parts, yields

0 =
ˆ

V

d4x

[(
∂L

∂φ
−∂µ ∂L

∂(∂µφ)

)
η(x)

]
α=0

+
[

∂L

∂(∂µφ)
η

]
∂V

. (1.48)

The last term is a surface term (to be evaluated along the normal of the surface) which van-
ishes because of (1.47). Since the first term has to vanish for any η(x), we conclude that

∂L

∂φ
−∂µ ∂L

∂(∂µφ)
= 0 . (1.49)

This is the field theory version of the EULER-LAGRANGE equation, representing a necessary
condition forφ(x) to be a local extremum of the action functional S[φ]. Note that we have not
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specified the nature of the fieldφ any further. Ifφ represents a multi-component fieldφa , a =
1, . . . , N where a can be any kind of index, we correspondingly obtain N EULER-LAGRANGE

equations

∂L

∂φa
−∂µ ∂L

∂(∂µφa)
= 0. (1.50)

Let us start with the simplest example of a single-component real scalar field φ(x) ∈R. Since
L must be a LORENTZ scalar, the simplest term involving ∂µφ which we can write down is
∼ (∂µφ)(∂µφ). Because of the necessary pairing of LORENTZ indices, this term is invariant
under the additional symmetry φ→−φ (a Z2 symmetry, a transforamtion group consisting
of the elements {−1,1}). If we wish to maintain this symmetry also for theφ-dependent parts,
the simplest LAGRANGE density takes the form

L = 1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 , (1.51)

where the factors of 1
2 are pure convention and the parameter m has been introduced to

let the second term have the same dimensionality (units) as the first term. Inserting (1.51)
into (1.49), we find

∂L

∂φ
=−m2φ (1.52a)

and with (∂κφ)(∂κφ) = gκλ(∂κφ)(∂λφ) and ∂(∂κφ)
∂(∂µφ) = δ

µ
κ, we get

∂L

∂(∂µφ)
= 1

2

∂

∂(∂µφ)
gκλ(∂κφ)(∂λφ)

= 1

2
gκλδµκ∂λφ+ 1

2
gκλ∂kφδ

µ

λ
= ∂µφ. (1.52b)

⇒ ∂µ
∂L

∂(∂µφ)
= ∂µ∂µφ=□φ. (1.53)

In other words, the EULER-LAGRANGE equation reads

(□+m2)φ= 0 (1.54)

being identical to the KLEIN-GORDON equation. We conclude that (1.51) corresponds to the
LAGRANGE density of KLEIN-GORDON theory.

Several comments are in order:

1.) We have arrived at (1.51) using symmetry arguments (LORENTZ, Z2) and simplicity.
While symmetry is a clearly defined criterion, simplicity (or beauty) is rather vague. While
classical field theory has not much to offer as an alternative argument, quantum field theory
does have another consistency criterion that can (at least partly) replace simplicity, it goes
under the name of renormalizability which sounds (and at first sight is) technical, but goes
to the very heart of the existance, origin or emergence of quantum field theories. To zeroth
approximation, renormalizability is related to dimensionality, see below.
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1.3 The action principle for classical field theories Particles and Fields

2.) Disregarding Z2 symmetry, an even simpler term would be a linear term ∼+ jφ with a
parameter j or a function j (x). The resulting field equation would be

(□+m2)φ(x) = j (x). (1.55)

Such a linear term hence would have the meaning of a source term. Note, however, that such
a source term would break Z2 symmetry.

3.) Let us clarify the notion of units or dimensionality in our conentions where ℏ = c = 1.
For instance, from the dispersion relation (1.41a), it is clear that energy, momentum and
mass all carry the same units which can be expressed in terms of an arbitrary unit scale. In
high-energy physics, the typical choice is the energy unit of electron Volts eV with a GeV
corresponding approximately to the mass (rest energy) of the proton. Solely counting mass
or energy dimensions, we write

[E ] = [ω] = [pi ] = [m] = 1. (1.56a)

Since the action carries the same unit as ℏ= 1, the action itself is dimension less,

[S] = 0. (1.56b)

Since position times momentum has the unit of an action (as well as angular momentum),
we have

[x ·p] = 0.

With (1.56a) this implies that position carries an inverse mass dimension

[x] =−1 ⇒ [d4x] =−4
(1.56b)⇒ [L ] = 4 (1.56c)

in four spacetime dimensions. From (1.56c) we deduce that

[∂µ] =
[
∂

∂xµ

]
= 1. (1.56d)

Combining these findings with the form of L in (1.51), we see that the field amplitude itself
must carry a mass dimension

[φ] = 1. (1.56e)

4.) The linearity of the resulting field equation is in one-to-one correspondence with the
fact, that the action/LAGRANGIAN (1.51) is quadratic in the fields. It is straightforward to
construct more general non-linear theories, e. g. by generalizing the mass term to a full func-
tion

L = 1

2
(∂µφ)(∂µφ)−V (φ); (1.57)

in analogy to classical mechanics, we call V (φ) a potential. Note, however, that V (φ) generi-
cally does not give preference for a particle/excitation to be at a certain position in space(time),

13



1.3 The action principle for classical field theories Particles and Fields

but for the field to have a certain amplitude. Correspondingly, the first term ∼ (∂µφ)(∂µφ) is
called a kinetic term. Analogously to mechanics, it is a measure for how much action is stored
in variations of the field in time and space.

Z2 symmetry is preserved if the potential satisfies V (φ) = V (−φ). Considering its Taylor ex-
pansion about the origin in field space

V (φ) = 1

2
m2φ2 + λ

4!
φ4 + . . . (1.58)

we encounter a quartic term which, on the level of the equations of motion, turns into a
cubic interaction,

(□+m2)φ+ λ

3!
φ3 + . . . = 0. (1.59)

The parameter λ is dimensionless [λ] = 0 and serves as a measure for the interaction of the
field with itself. It is therefore called a coupling constant. For small λ≪ 1, the dispersion
relation of small amplitude fluctuations remains essentially unmodified, and we expect ap-
proximate plane wave excitations of mass m. For large couplings and/or large amplitudes,
the nonlinearity will lead to sizable modifications both of the wave form as well as the dis-
persion relation.

Conclusion We will close this section by listing the actions that give rise to the field equa-
tions discussed in the previous section:

1. MAXWELL’s electrodynamics:

L =−1

4
FµνFµν− JµAµ (1.60)

in presence of a current Jµ. The signs are chosen such that the above given conventions
are met.

2. KLEIN-GORDON theory for a complex field φ ∈C.

L = (∂µφ
∗)(∂µφ)−m2φ∗φ (1.61)

with the decomposition into two real fields

φ= 1p
2

(φ1 + iφ2), φ1,2 ∈R. (1.62)

(1.61) splits into two copies of (1.51).

3. SCHRÖDINGER theory forΨ(x) ∈C:

L =Ψ∗i∂tΨ− 1

2m
(∇⃗∇∇Ψ∗)(∇⃗∇∇Ψ)−V (x)Ψ∗Ψ. (1.63)

The explicit verification of the corresponding field equations is left as an exercise to
the reader.
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1.4 Functional differentiation Particles and Fields

1.4 Functional differentiation

The variational calculus, introducing a variation parameter and an arbitrary variation η(x),
can be most conveniently formulated in terms of functional differentiation. The latter is a
directional derivative of a complex number valued functional taken into the direction of a
function in function space. Its precise mathematical definition requires a careful discussion
of function spaces. For our purposes, it suffices to work with the (mostly) algebraic rules
following from its definition (which can equally well be worked out from the variational cal-
culus used above): a functional derivative is linear

δ

δφ(x)

(
αF1[φ]+βF2[φ]

)=αδF1[φ]

δφ(x)
+βδF2[φ]

δφ(x)
(1.64)

and obeys a LEIPNIZ rule

δ

δφ(x)

(
F1[φ]F2[φ]

)= δF1[φ]

δφ(x)
F2[φ]+F1[φ]

δF2[φ]

δφ(x)
. (1.65)

The most elementary nontrivial derivative is

δφ(y)

δφ(x)
= δ(D)(y −x) (1.66)

where D is the number of spacetime dimensions and δ(D) is the Delta Distribution on the
considered function space.

With this tool, let us verify that the extrema of the action S[φ] satisfy the EULER-LAGRANGE

equations:

0 = δS

δφ(x)
=
ˆ

d4 y
δ

δφ(x)
L (φ,∂µφ, y)

=
ˆ

d4 y

(
δφ(y)

δφ(x)

∂L

∂φ
+ δ(∂y

µφ(y))

δφ(x)

∂L

∂(∂µφ)

)

=
ˆ

d4 y

(
δ(4)(y −x)

∂L

∂φ
[y]+∂y

µδ
(4)(y −x)

∂L

∂(∂µφ)
[y]

)
I.B.P=
ˆ

d4 y

[
δ(4)(y −x)

(
∂L

∂φ
[y]−∂y

µ

∂L

∂(∂µφ)
[y]

)]
= ∂L

∂φ(x)
−∂µ ∂L

∂(∂µφ(x))
. (1.67)

Note that L is a function of the field and its derivatives and thus only partial derivatives of
L have to be evaluated. The surface term of the partial integration (I.B.P) does not con-
tribute for obvious reasons as long as x is not on the boundary of the integration volume. If
it was, the functional directional derivative would correspond to a change or variation of the
boundary conditions imposed on the fields, which we do not want to consider here. This
restriction is equivalent to choosing η(x)

∣∣
∂V = 0 in the variational calculus.
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2 Aspects of classical field theory

In the introductory section, we have essentially derived (or motivated) the LAGRANGIAN for-
mulation of classical field theory in almost complete analogy to classical mechanics. Let us
continue to use this analogy to apply further concepts of classical mechanics to field theory,
starting with the HAMILTONIAN formulation.

2.1 Hamiltonian formulation

Let us use the KLEIN-GORDON field as a simple example for the following section. As in (1.57),
we generalize the mass term to a full potential:

S[φ] =
ˆ

d4x L (φ,∂µφ),

L = 1

2
(∂µφ)(∂µφ)−V (φ).

(2.1)

Let us first try to find a relativistic (covariant) HAMILTONIAN, naively generalizing the rules
of classical mechanics to field theory. For this, we first define a field momentum conjugate
to the field amplitude:

Πµ = ∂L

∂(∂µφ)
(2.1)= ∂µφ. (2.2)

The corresponding HAMILTONIAN is then obtained by a LEGENDRE transform:

Hcov =Πµ ∂µφ︸︷︷︸
Πµ

− L︸︷︷︸
1
2ΠµΠ

µ−V (φ)

= 1

2
ΠµΠ

µ+V (φ). (2.3)

At first glance, this looks similar to point particle HAMILTONIAN’s a la H = p2

2m +V (x). How-
ever, there is a problem: with (2.2), the kinetic term corresponds to 1

2ΠµΠ
µ = 1

2 (∂tφ)2 −
1
2 (∇⃗∇∇φ)2. Because of the minus sign, Hcov is not bounded from below even for bounded po-
tentials V (φ). Hence, Hcov cannot be interpreted as an energy quantity related to a given
field configuration.

This is not too surprising, since Hcov by construction is invariant under LORENTZ transfor-
mations, whereas the field energy is expected to transform as a 0-component of a 4-vector
(as for a point particle).

In order to preserve the energy interpretation for the HAMILTONIAN, we give up manifest
covariance for a moment and choose a fixed reference frame with a time t , xµ = (t , x), such
that the LAGRANGIAN reads

L = 1

2
(∂µφ)(∂µφ)−V (φ) = 1

2
φ̇2 − 1

2
(∇⃗∇∇φ)2 −V (φ). (2.4)

Now, we define the canonical momentum as in classical mechanics:

Π(x) = ∂L

∂φ̇(x)
= φ̇(x), (2.5)
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2.1 Hamiltonian formulation Particles and Fields

where the notation should indicate that this definition holds at every space point x , while
the time t is considered as an evolution parameter as in classical mechanics. The Hamilto-
nian formulation thus induces a foliation1 of spacetime M→ R3 ⊗R. Again, we obtain the
Hamiltonian by a LEGENDRE transformation

H =Π φ̇︸︷︷︸
Π

− L︸︷︷︸
(2.4)

= 1

2
Π2 + 1

2
(∇⃗∇∇φ)2 +V (φ). (2.6)

For potentials bounded from below, this is a manifestly bounded function of the field and
the momentum. Its units correspond to those of an energy density. hence, the three terms
can be interpreted as the energy densities stored in or required for the time evolution ∼Π2,
spatial field variations ∼ (∇⃗∇∇φ)2, or in the excitation of field amplitudes ∼V (φ).

As will be detailed in the exercises, the equation of motion follow now directly from the cor-
responding HAMILTON equations in complete analogy to classical mechanics. The construc-
tion can be briefly summarized as follows: φ(x) and Π(x) span the phase space. Using func-
tional differentiation, we can define POISSON brackets for general phase space functionals
A[φ,Π],B [φ,Π]:

{A,B} =
ˆ

d3z

(
δA

δφ(z)

δB

δΠ(z)
− δB

δφ(z)

δA

δΠ(z)

)
. (2.7)

The fundamental POISSON brackets read{
φ(x),Π(y)

}= δ(3)(x − y){
φ(x),φ(y)

}= 0 = {
Π(x),Π(y)

}
.

(2.8)

The canonical equations of motion then read as usual

φ̇(x) = {
φ(x), H

}
, Π̇(x) = {Π(x), H }, (2.9)

where we have used the HAMILTON functional

H =
ˆ

d3 y H (2.10)

(H hence is also called the HAMILTONIAN density). Inserting (2.6) into (2.9) leads to the field
equation

0 = φ̈−∇⃗∇∇2
φ+V ′(φ) ≡□φ+V ′(φ) (2.11)

as expected. We emphasize that (2.11) is a covariant field equation even though the HAMIL-
TONIAN construction is not manifestly covariant at intermediate stages.

1Expression of spacetime as a series of spatial slices which evolve in time.
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2.2 Symmetries and conservation laws Particles and Fields

2.2 Symmetries and conservation laws

In classical mechanics, symmetries can be closely related to conserved quantities as is cap-
tured by NOETHER’s theorem. In fact, the same relation persists in classical field theory:

Let us consider an infinitesimal deformation of the field

φ(x) →φ′(x) =φ(x)+δφ(x), (2.12)

where δφ(x) is considered to be an infinitesimal continuous deformation (finite deforma-
tions can be generated from successive infinitesimal deformations). Equation (2.12) is con-
sidered to be a symmetry transformation if the field equations remain invariant. On the level
of the LAGRANGIAN, this implies that L is allowed to change only up to a total derivative:

L →L ′ =L +δL , where δL = ∂µK µ. (2.13)

Then, the action changes by a surface term

δS =
ˆ

d4xδL =
ˆ

Ω

d4x ∂µK µ =
ˆ

∂Ω

dσµK µ (2.14)

whereΩ denotes a spacetime volume. If K µ is sufficiently localized (which we assume in the
following), δS vanishes. This implies that the action is invariant under (2.12) and (2.13) and
so are the equations of motion.

NOETHER’s theorem now relates this invariance to a conserved quantity.

Let φ→ φ+δφ with δL = ∂µK µ be a symmetry transformation. Then there is a
4-current

Noether current: Jµ =Πµδφ−K µ (2.15)

where Πµ = ∂L

∂(∂µφ)
, (2.16)

which is conserved, ∂µ Jµ = 0, (2.17)

if φ satisfies the equations of motion.

Proof. Varying the LAGRANGIAN yields

∂µK µ = δL = ∂L

∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)︸ ︷︷ ︸
=∂µδφ

=
(
∂L

∂φ
−∂µ ∂L

∂(∂µφ)

)
δφ+∂µ

(
∂L

∂(∂µφ)
δφ

)
. (2.18)

Using the equations of motion, the term in the first bracket vanishes and we find

0 = ∂µ(Πµδφ−K µ) =: ∂µ Jµ. (2.19)
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2.2 Symmetries and conservation laws Particles and Fields

If in addition the NOETHER current vanishes sufficiently fast towards spatial infinity |x |→∞,
we find

0 =
ˆ

d3x ∂µ Jµ = ∂t

ˆ
d3x J 0 −

ˆ

R3

d3x ∇⃗∇∇··· J

= ∂t

ˆ
d3x J 0 −

ˆ

∂R3

dA · J

︸ ︷︷ ︸
→0

= ∂t

ˆ
d3x J 0 =: Q̇. (2.20)

The corresponding integral over the zero component of the current is called the NOETHER

charge,

Q =
ˆ

d3x J 0 , (2.21)

which by virtue of (2.20) is conserved.

Let us illustrate the significance of NOETHER’s theorem with the aid of two examples

Example 1: translations

Translations are part of the spacetime symmetries which together with the LORENTZ trans-
formations form the POINCARÈ group. Translations invariant systems do not feature a dis-
tinguished point in spacetime. A translation

xµ→ xµ
′ = xµ−aµ, aµ = const (2.22)

acts on the field as

φ(x) →φ(x ′) =φ(x −a). (2.23)

For infinitesimal translations, we get

φ(x −a) =φ(x)−aµ∂
µφ(x)+O

(
a2)

⇒ δφ(x) =−aµ∂
µφ(x).

(2.24)

Similarly, we get for the LAGRANGIAN

L (x) →L (x −a) =L (x)−aµ∂
µL (x)+O

(
a2)

⇒ δL =−aµ∂
µL (x) ≡ ∂µK µ (2.25)

⇒ K µ =−aµL .

From this, we get the NOTHER current

Jµ =Πµδφ−K µ =Πµ(−aν∂
νφ)+aµL

=−aν(Πµ∂νφ− gνµL ) =: −aνT µν, (2.26)
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2.2 Symmetries and conservation laws Particles and Fields

where we have defined the canonical energy-momentum tensor

T µν = ∂L

∂(∂µφ)
∂νφ− gµνL (2.27)

which by NOETHER’s theorem satisfies

∂µT µν = 0. (2.28)

The 00-component corresponds to the HAMILTONIAN density,

T 00 =Π0∂0φ−L ≡Πφ̇−L =H . (2.29)

The associated conserved NOETHER charge

Q̇ = ∂t

ˆ
d3x J 0 ⇒ ∂t

ˆ
d3x T 0ν =:

d

dt
Pν = 0 (2.30)

can be interpreted as the physical 4-momentum of the field (not to be confused with the
canonical momentumΠµ),

Pµ :=
ˆ

d3x T 0ν =
ˆ

d3x
(
Π∂µφ− g 0µL

)
, (2.31)

the components of which read

P 0 =
ˆ

d3x T 00 = H (energy)

P i =
ˆ

d3xΠ∂iφ. (3-momentum).
(2.32)

For example in MAXWELL’s theory, P i is related to the POYNTING vector.

Example 2: Complex scalar field

In addition to spacetime symmetries also internal symmetries can induce conservation laws.
Let us consider the case of a complex scalar field

L = ∂µφ∗∂µφ−m2φ∗φ. (2.33)

The LAGRANGIAN is invariant under phase rotations, δL = 0

φ→ eiαφ, φ∗ → e−iαφ∗ (2.34)

for α= const ∈R. Infinitesimally, we have

φ→φ− iαφ=φ+δφ, φ∗ →φ∗+ iαφ∗ =φ∗+δφ∗. (2.35)

Since δL = 0, we have K µ = 0 as well. Correspondingly the NOETHER current is

Jµ =Πµδφ+Π′µδφ∗ =−iα(φ∂µφ∗−φ∗∂µφ)

=−2α Im(φ∗∂µφ). (2.36)
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2.2 Symmetries and conservation laws Particles and Fields

Apart from the (irrelevant) factor α, we obtain the KLEIN-GORDON current

jµ = Jµ

α
=−2Im(φ∗∂µφ), (2.37)

and the corresponding NOETHER charge

Q =
ˆ

d3x j 0 = i

ˆ
d3x (φ∗∂0φ−φ∂0φ∗). (2.38)

Both expressions (2.37) and (2.38) are familiar from relativistic quantum mechanics: after
reinterpreting the negative energy states as antiparticles, jµ corresponds to the electromag-
netic current generated by a KLEIN-GORDON wave function, and Q to its electric charge,
which upon coupling to a MAXWELL field generate electric and magnetic fields.
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3 Nonlinear scalar field theories

In the preceding sections, we have already considered scalar field theories with a general po-
tential V (φ) as an example for a nonlinear generalization of KLEIN-GORDON theory, see (1.57)

L = 1

2
(∂µφ)(∂µφ)−V (φ). (3.1)

This class of models has a wide range of applications (in particle physics, many-body physics,
statistical physics) and features a number of physical mechanisms. In the following, we con-
centrate on their properties related to symmetry and (spontaneous) symmetry breaking.

3.1 Z2 model

We have already discussed that (3.1) for a real scalar field entails a Z2-symmetry under

φ→−φ if V (φ) =V (−φ). (3.2)

E. g. for V (φ) = 1

2
m2φ2 + λ

4!
φ4 (3.3)

the equation of motion is (
□+m2 + λ

3!
φ2

)
φ= 0 (3.4)

from which it is obvious that for a given solution φ0(x) also −φ0(x) is a solution of (3.4) (of
course, it may not satisfy the same boundary conditions that have been imposed on φ0(x).
In general, boundary conditions may break (violate) the Z2 symmetry explicitly).

In any case, (3.4) has a trivial solution: φ= 0 which is sometimes called the vacuum solution.
Small excitations φ≪ 1 propagate to leading order in a λ-expansion according to the free
(linear) KLEIN-GORDON equation (□+m2)φ ≈ 0+O (λ), justifying to say that excitations on
top of the vacuum have a mass m.

Let us now deform (3.3) a little and consider the potential

V (φ) =−1

2
µ2φ2 + λ

4!
φ4. (3.5)

At first sight, this looks odd as one may be tempted to say that the theory has a negative mass
squared m2 =−µ2.

This is, however, not true, as we should study the dispersion relation of excitations on top
of the vacuum in order to define a propagating mass. The form of the potential reveals,
that φ = 0 is not a stable solution. Any excitation will drive the system towards one of the
minima

φ0 =±
√

6µ2

λ
=: ±v. (3.6)
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3.1 Z2 model Particles and Fields

−v +v

φ

V (φ)

Fig. 1: Graphical representation of the potential (3.5).

Hence, the role of the stable vacuum solution is now played by one of the two cases φ0 =±v .
Let us study the excitations on top of the right vacuum:

φ(x) = v +σ(x). (3.7)

The LAGRANGIAN then reads

L =−1

2
(∂µσ)(∂µσ)−

(
1

2
(2µ2)σ2 + 1

3!
λvσ3 + 1

4!
λσ4

)
. (3.8)

For small excitations σ≪ 1, the equations of motion then read

(□+ (2µ2))σ= 0+O (λ). (3.9)

We conclude that these excitations behave like relativistic point particles with a mass
p

2µ.
In addition to the quartic ∼φ4 interaction, σ in (3.8) also exhibits a cubic interaction ∼σ3,

Vσ(σ) = 1

2
(2µ2)σ2 + 1

3!
λvσ3 + 1

4!
λσ4. (3.10)

We observe that – while V (φ) is Z2 symmetric – the potential for σ is not, Vσ(σ) ̸= Vσ(−σ).
This is, of course, not too surprising, because we have made a choice in (3.7) and picked the
right vacuum solution φ0 = +v . If we had picked the left solution, the conclusions about
the massive excitation in (3.9) would have been the same, as well as the result that the new
potential for σ as the excitation on top of the vacuum φ0 = −v would not exhibit a Z2 sym-
metry.

The mere fact that the vacuum solution has the property φ0 = ±v ̸= 0 is already in conflict
with the symmetry. In order to be in the vacuum the field has to give preference to either a
positive amplitudeφ0 =+v or a negative amplitudeφ0 =−v . Once, the vacuum solution has
made this choice (we say has broken the symmetry) the symmetry is no longer manifest for
excitations on top of the vacuum.

It is useful to introduce some more nomenclature: if the vacuum configuration of a field
corresponds to a nonzero amplitude, we say that the field condenses. The value v of the
amplitude in the vacuum is called a condensate. As the vacuum configuration no longer
respects the symmetry of the LAGRANGIAN, we talk about

spontaneous symmetry breaking.
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3.2 O(N ) model Particles and Fields

The attribute spontaneous characterizes the situation that the field, in principal, has two
(or in general, several) options to relax towards a vacuum. This should be contrasted with
symmetry breaking induced by boundary conditions or non-symmetric terms in the action,
which are imposed explicitly in the form of additional conditions or parameters.

3.2 O(N ) model

Let us next promote the field φ to a N -component vector field φa ∈ RN , a = 1, . . . , N with a
LAGRANGIAN

L = 1

2
(∂µφ

a)(∂µφa)−V (φ) (3.11)

where V (φ) =−1

2
µ2φaφa + λ

4!
(φaφa)2. (3.12)

Equivalently, we could use a vector notation

L = 1

2
(∂µφ) · (∂µφ)−

(
−1

2
µ2φ ·φ+ λ

4!
(φ ·φ)2

)
. (3.13)

It is important to note that these vectors φ(x) do not point along certain directions in space
or spacetime, but denote directions in an internal spaceφ ∈RN .

In the form of (3.13), it is easy to see that the model is invariant under transformations that
leave the Euclidean scalar product in RN invariant. These transformations form the group
of orthogonal transformations O(N ), for example the field vector components φa are trans-
formed by N ×N matrices U ab

φa →U abφb , (3.14)

which constitute a matrix representation of O(N ). The scalar product is invariant, if the U ab

satisfy

U abU ac = (U⊺)baU ac = (U⊺U )bc =1bc = δbc . (3.15)

As the field components φa are real, the U ab correspond to orthogonal N ×N matrices with
real components. For the above case with a negative mass-like parameter −µ2, the potential
has the form as sketched in figure 2.

For N = 2, we get a circle in field space, where the potential is minimal. For general N , this
minimum corresponds to a (N −1)-dimensional sphere SN−1, which is defined by

φa
0φ

a
0 = v2 = 6µ2

λ
. (3.16)

In contrast to the Z2 model these are not merely two points, but a continuum of possible
vacuum solutions. Let us choose a specific one

φ0 =

0
...
v

, v =
√

6µ2

λ
. (3.17)
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φ1

φ2

V
(φ

)

Fig. 2: Potential V (φ) for a = 1,2.

Then, the O(N ) symmetry is spontaneously broken, since a generic O(N ) transformation
would rotate φ0 to a different point on SN−1. Still, there is a subset of O(N ) transformations
that leaves φ0 invariant. This is the set of rotations about the φ0-axis in field space. It is
possible to show that this subset forms again a group, namely O(N − 1). We say that the
ground state (3.17) breaks the group O(N ) spontaneously to O(N −1).

Now, it is interesting to study the excitations on top of the vacuum, which we parametrize
by

φ(x) =
(
π(x)

v +σ(x)

)
, πi , i = 1, . . . , N −1. (3.18)

In terms of the fields πi ,σ(x), the LAGRANGIAN reads

L = 1

2
(∂µπ

i )(∂µπi )+ 1

2
(∂µσ)(∂µσ)−V (σ,πi ) (3.19)

where V (σ,πi ) = 1

2
(2µ2)σ2 +

√
λ

6
µσ3 +

√
λ

6
µ(πi )2σ

+ λ

4!
σ4 + λ

12
(πi )2σ2 + λ

4!
[(πi )2]2. (3.20)

Here, we observe:

• a scalar excitation σ(x) with mass

m2
σ = 2µ2 (3.21)

• The πi and σ fields are interaction as well as self interacting. This means that the field
equations for πi and σ are mutually coupled and nonlinear.

• The LAGRANGIAN is invariant under transformations of πi by orthogonal (N −1)×(N −
1) matrices

πi →U i jπ j where U ∈O(N −1). (3.22)

This reflects the residual O(N −1) symmetry.
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3.2 O(N ) model Particles and Fields

• The π-field remains massless, as there is no pure quadratic term in πi .

The last point is particularly important: the spontaneous breaking of a continuous symmetry
O(N ) →O(N −1) yields N −1 massless bosons (here: scalars).

The latter are called NAMBU-GOLDSTONE bosons (or only GOLDSTONE bosons), where the
nomenclature comes from a QFT/particle physics context. The phenomenon, however, is
equally important in classical field theory, e. g. in applications to statistical models (e. g. spin
waves).

The number of GOLDSTONE bosons is related to the symmetry breaking pattern, more specif-
ically to the number of broken generators. The latter are those generators of O(N ) that gen-
erate transformations that would not leave the chosen vacuum invariant. This statement is
quantifiable:

# of O(N ) generators nO(N ) = 1

2
N (N −1)

# of O(N −1) generators nO(N−1) = 1

2
(N −1)(N −2) (3.23)

⇒ nO(N ) −nO(N−1) = N −1 = # of πi fields.

The present example is a special case of the more general GOLDSTONE theorem, see below,
relating the appearance of GOLDSTONE bosons and their number to the number of sponta-
neously broken generators (it is not restricted to the present O(N ) case).

The notation in terms of σ and π fields is taken over from low-energy models of Quantum
Chromodynamics (QCD): QCD has an approximate chiral symmetry (to be discussed later).
In the case, where only up and down quarks are considered, the symmetry corresponds to in-
dependent flavor rotations, i. e. unitary transformations, of the left- and right-handed com-
ponents of the DIRAC spinor fields. The symmetry group is

SU (2)L ×SU (2)R
∼=O(4) (3.24)

isomorphic to O(4). Theσ field is also often called a radial excitation, as it characterizes field
excitations orthogonal to the SN−1 sphere, while the πi fields are excitations within the SN−1

sphere. The σ excitation has to go uphill in the potential V (σ,πi ), and thus is massive. In
QCD it is supposed to correspond to a heavy scalar mesonic resonance (∼ O (1GeV)). The
πi excitations are excitations within SN−1, i. e. a flat direction in the potential landscape. In
QCD, π1,π2,π3 correspond to the light pions with a mass ∼ 135MeV. This small mass arises
from the fact that the chiral symmetry is only approximate in QCD. It is also explicitly broken
by the quark mass terms.

In the literature, O(N ) models in the form discussed here are also called linear sigma mod-
els.
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3.3 Goldstone theorem Particles and Fields

3.3 Goldstone theorem

The connection between the appearance of massless GOLDSTONE bosons and spontaneously
broken symmetries is generally formulated within GOLDSTONE’s theorem. It holds both in
classical field theory as well as in quantum field theory. In both cases, the proof is essentially
identical except for the fact that the classical potential has to be replaced by the effective
potential in QFT2.

We start from the action that we write as

S[φ] =
ˆ

d4x (−V (φ)+ terms with derivatives). (3.25)

We assume that the derivative terms – if nonzero – only result in deviations from the ex-
tremum of the action, such that the ground state is homogeneous and thus determined by
the minimum of the potential. In other words, we assume that V (φ) is minimized by φa

0 =
const. in space and time. Then

∂

∂φa
V

∣∣∣∣
φa (x)=φa

0

= 0. (3.26)

Expanding about this minimum, we get

V (φ) =V (φ0)+ 1

2
(φ−φ0)a(φ−φ0)b ∂

2V (φ0)

∂φa∂φb
+ . . . (3.27)

since the linear term vanishes by virtue of (3.26). The coefficient of the quadratic term

m2
ab := ∂2

∂φa∂φb
V (φ0) (3.28)

is a symmetric matrix, the eigenvalues of which specify the masses of the fields. Since φ0

is a minimum, these masses cannot be negative. Next, we assume that the theory has a
continuous symmetry (obeyed by the action as well as the quantization procedure in QFT)
with the transformed field of the form

φa →φa +δφa , (3.29)

where δφa can be some function of all fields δφa = δφa(φ). Considering only constant fields,
the invariance of the action implies invariance of the potential

V (φ) =V (φ+δφ) (3.30)

⇒ δφa ∂

∂φa
V (φ) = 0. (3.31)

Differentiating with respect to φb and setting φ=φ0, we get

0 = ∂(δφa)

∂φb

∣∣∣∣
φ0

(
∂V (φ0)

∂φa

)
︸ ︷︷ ︸

=0

+δφa(φ0)mab

= δφa(φ0)m2
ab . (3.32)

2Remark: The effective potential already includes the effects of all quantum fluctuations.
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If the transformation leaves φ0 unchanged, then δφa(φ0) = 0, and (3.32) is trivially satis-
fied. A spontaneously broken symmetry is precisely one for which δφa(φ0) ̸= 0. In this case,
δφa(φ0) is an eigenvector of the mass matrix with eigenvalue zero.

This proves GOLDSTONE’s theorem:

Every continuous symmetry of the theory that is not a symmetry of the ground
stateφ0 gives rise to a massless excitation corresponding to a NAMBU-GOLDSTONE

boson.

3.4 Hidden symmetry and the Higgs mechanism

Though the GOLDSTONE theorem has many applications in field theory in condensed-matter
as well as particle physics, it hampered progress in particle physics for quite a while around
1960. While the use of symmetries appeared technically and aesthetically helpful in the con-
struction of models for the weak (and strong) interactions, these symmetries had to be bro-
ken in order to match with the data. if the breaking happens spontaneously, GOLDSTONE’s
theorem seemed to imply the necessary occurence of massless excitations – which, however,
were not observed. On the contrary, the potentially existing bosons seemed to be rather
heavy. the essential breakthrough was stimulated by ANDERSON’s description of supercon-
ductivity and the MEISSNER-OCHSENFELD-effect in condensed-matter physics and then was
transferred to nonabelian models and particle physics by BROUT, ENGLERT, HIGGS, HAGEN,
KIBBLE and GURALNIK, leading to what is now known as the electroweak HIGGS sector of the
standard model of particle physics.

We will study here the essentials with the aid of a simpler model: scalar QED (or abelian
HIGGS model):

L =−1

4
FµνFµν+ (Dµφ)∗(Dµφ)+µ2φ∗φ− λ

4!
4(φ∗φ)2, (3.33)

where φ = 1p
2

(φ1 + iφ2) ∈ C is a complex charged scalar field (e. g. the charged pions). The

gauge field Aµ occurs in

the covariant derivative Dµ = ∂µ+ ie Aµ (3.34)

and the field strength Fµν = ∂µAν−∂νAµ. (3.35)

The theory is symmetric under local U (1) transformations (gauge transformations)

φ(x) → e−ieΛ(x)φ(x), e−ieΛ(x) ∈U (1) Aµ(x) → Aµ+∂µΛ(x), (3.36)

whereΛ(x) is an arbitrary smooth function of spacetime.

With µ2 > 0, the potential part of (3.33) V = −µ2φ∗φ+ λ
4! 4(φ∗φ)2 has a mexican hat shape

such that the minima of V satisfy

φ∗
0φ0 = 1

2
v2, v =

√
6µ2

λ
(3.37)

28



3.4 Hidden symmetry and the Higgs mechanism Particles and Fields

as before (the factor 1
2 takes care of the different normalization of the scalar fields ∈C).

The fact that the symmetry is a local symmetry is an essential difference to the purely scalar
cases, say the O(2) model, considered before: e. g. choosing φ0 to point into the φ2 direction
everywhere is not a meaningful statement, since the local transformation (3.36) can change
φ0 independently from one point to another.

The gauge symmetry (3.36) indeed suggests to parametrize φ(x) differently then before

φ(x) = 1p
2

eiπ(x)
v (v +σ(x))

= 1p
2

(v +σ(x)+ iπ(x))+O
(
π2).

(3.38)

The second line is reminiscent to the linear parametrization used before, however, the com-
plete parametrization in the first line is nonlinear.

For a given field configuration φ(x), Aµ(x), we ware free to perform a gauge transformation
(in theZ2 model, this corresponded to choose the right minimum without loss of generality;
or in the O(N ) model, we chose (3.17)).

Here, we choose a special gauge transformation with

Λ(x) = π(x)

ev
. (3.39)

Then: φ(x) →φ′(x) = e−ieΛ(x)φ(x)
(3.38)=
(3.39)

1p
2

(v +σ(x))

Aµ(x) → A′
µ(x) = Aµ(x)+ 1

e v
∂µπ(x).

(3.40)

In terms of the new fields σ(x),π(x), A′
µ(x), the LAGRANGIAN now reads

L =−1

4
F ′
µνF ′µν+ 1

2
(∂µσ)(∂µσ)+ 1

2
e2v2 A′

µA′µ

+ 1

2
e2(A′

µ)2σ(2v +σ)− 1

2
(2µ2)σ2 +O

(
σ3,σ4). (3.41)

We observe:

• σ occurs as a massive scalar as in the purely scalar models

• Additionally, the photon A′
µ has acquired a mass term m2

A = e2v2 as in Proca theory.

• Most surprisingly, π(x) has vanished completely!

This last observation is, in fact, compatible with the counting of propagating degrees of free-
dom: in the initial formulation, say, with a standard scalar mass parameter V = m2φ∗φ . . ., we
had two real scalar fields (φ1,φ2) and two photon polarization modes (2 transverse modes):
2+2 = 4.
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Now, we find one real scalar (σ) and three polarization modes of a massive photon (two trans-
verse and one longitudinal). The would-be NAMBU-GOLDSTONE boson π has been eaten up
by the photon. This highlights the essentials of the HIGGS mechanism.

We finally emphasize that the above analysis involved a special choice of gauge (fixed by
hand). The observations made above become particularly transparent in this gauge choice.
By choosing a gauge, the gauge symmetry is in some sense explicitly broken by hand. By
a some what unfortunate nomenclature, the HIGGS mechanism is sometimes referred to as
the spontanteous breaking of gauge symmetry. In a strict sense, this is nonsense, as gauge
symmetry cannot be broken according to ELITZUR’s theorem.

The point here is that particular gauges are convenient to identify the excitations. The gauge
symmetry is still intact and we could try to look for the same physics in a different gauge.
These circumstances are therefore better referred to by the name hidden symmetry.
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4 Particles and Fields as Representations of the
Lorentz group

Even in absence of any internal symmetry, the symmetries of spacetime are an essential
property. In relativistic field theories, these are given by the POINCARÉ group consisting of
spacetime translations and LORENTZ transformations, consequences of both of which have
already been discussed above. In the following, we detail how LORENTZ invariance is con-
nected to a classification of fields. Analogous considerations can also be performed for non-
relativistic field theories on the basis of Galilei invariance.

4.1 Lorentz transformations

Let us take a closer look at LORENTZ transformations, recalling first some essential properties
already listed in chapter 1: a LORENTZ transformation is a linear operation on spacetime
vectors vµ,

vµ→ v ′µ =Λµνvν, (4.1)

that preserves the scalar product in MINKOWSKI space

v2 = gµνvµvν = vµvµ, g = diag(1,−1,−1,−1). (4.2)

The transformation matrix hence satisfies

gµνΛ
µ
ϱΛ

ν
σ = gϱσ. (4.3)

This generalizes to transformations of arbitrary contravariant tensors

T ′µ1...µn =Λµ1
ν1

. . .Λµn
νn

T ν1...νn (4.4)

of rank n. There are only two constant invariant tensors. One is given by the metric by virtue
of (4.3). The other one is the totally anti-symmetric tensor

εµνϱσ, ε0123 := 1 (4.5)

with the usual rules for the Levi-Civita symbol. According to (4.4), it transforms

ε′µνϱσ =ΛµαΛνβΛ
ϱ
γΛ

σ
δε

αβγδ = εµνϱσdetΛ (4.6)

where the second step makes use of the construction of the determinant using the ε-symbol.
From (4.3) we read off

(detΛ)2 = 1 ⇒ detΛ=±1. (4.7)

So strictly speaking, ε is only invariant for those LORENTZ transformations that have detΛ=
+1, but changes sign under those with detΛ=−1. From 3D Euclidean space, we are already
familiar with transformations that change the sign of ε: these are given by those orthogonal

31



4.1 Lorentz transformations Particles and Fields

transformations that convert a right-handed basis into a left-handed one. Analogously, this
applies to MINKOWSKI space. From (4.3) (ϱ= 0 =σ), we can derive another fact

1 = (Λ0
0)2 − (Λi

0)2

⇒ (Λ0
0)2 = 1+ (Λi

0)2

⇒Λ0
0 ≥ 1 or Λ0

0 ≤−1. (4.8)

The set of all LORENTZ-transformations forms the group O(3,1)3 (analogously to orthogo-
nal transformations O(4) in 4-dimensional Euclidean space, additionally accounting for the
metric signatures).

Equations (4.7) and (4.8) prove that this set can be decomposed into disconnected compo-
nents, as there is neither a path (1-parameter family of 1’s) that could possibly interpolate
between the detΛ = +1 and detΛ = −1 transformations nor a path interpolation between
theΛ′s withΛ0

0 ≤−1 andΛ0
0 ≥+1. This makes four disconnected components out of which

those with

detΛ=+1, Λ0
0 ≥ 1 (4.9)

are called orthochronous proper LORENTZ transformations. This is the component that con-
tains the unit element of the groupΛµν = δµν .

The other components are related to the orthochronous proper component by a parity trans-
formation (right ↔ left-handed basis) and/or a time inversion (t →−t ). Obviously, the in-
finitesimal LORENTZ transformations belong to the orthochronous proper component

Λ
µ
ν = δµν+εµν, ε

µ
ν≪ 1. (4.10)

Expanding (4.3) to first order yields

gϱσ+ gµσε
µ
ϱ+ gϱνε

ν
σ+O

(
ε2)= gϱσ (4.11)

⇒ ενµ+εµν = 0. (4.12)

Thus, εµν is an antisymmetric matrix with 6 independent parameters, 3 of which correspond
to LORENTZ-boosts (being parametrized by a spatial velocity vector v ) and further 3 describe
spatial rotations (e. g. Euler angles).

It is useful to write an infinitesimal LORENTZ transformation as

v ′µ = vµ+εµνvν =:

(
1− i

2
εϱσMϱσ

)µ
ν

vν (4.13)

where (Mϱσ)µν = i(δµϱgσν−δµσgϱν). (4.14)

This way of writing the transformation separates the parameters εϱσ from the generators Mϱσ

of the LORENTZ symmetry that encode the algebraic structure.

For any given set of fixed indices ϱ,σ, Mϱσ is a 4×4 matrix (with indices µν in (4.14)). These
matrices satisfy

[Mµν, Mϱσ] =−i(gµϱMνσ− gνϱMµσ− gµσMνϱ+ gνσMµϱ) . (4.15)

3more precisely: TheΛ′s discussed here form a matrix representation of this group
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Equation (4.15) defines the Lie-Algebra of the LORENTZ group SO(3,1) (the S means detΛ=
1). From an abstract perspective, (4.14) defines a particular representation of this algebra in
terms of 4×4 matrices. Since Mσϱ =−Mϱσ, there are in total 6 generators of this algebra.

Independently of the representation, we obtain finite LORENTZ transformations (within the
orthochronous proper component) by the exponential map

Λ= exp

(
− i

2
εϱσMϱσ

)
≈ 1− i

2
εϱσMϱσ+O

(
ε2). (4.16)

4.2 Fields as representations of the Lorentz group

Fields being the fundamental degrees of freedom of a field theory can be classified according
to their behaviour under LORENTZ transformations. So far, we have mainly considered scalar
fields which transform trivially,

φ′(x ′) =φ(x), x ′µ =Λµνxν. (4.17)

We have also already encountered the gauge field Aµ(x) which transforms as a vector,

A′µ(x ′) =ΛµνAν(x). (4.18)

For a general N -tuple ϕi , i = 1, . . . , N , the transformation rule reads

ϕ′
i (x ′) = D(Λ)i ϕ

j
j (x) (4.19)

where D(Λ) should be an N ×N matrix representation of the LORENTZ group. Which repre-
sentations do exist? Infinitesimally, we have

D(Λ) j
i = δ j

i −
i

2
εµν(Sµν) j

i (4.20)

where Sµν is a N ×N matrix for each fixed set of µ,ν. In order to correspond to a LORENTZ

transformation, Sµν has to satisfy the LORENTZ algebra (4.15), Sµν ≡ D(Mµν). Our goal is to
classify all possible choices of Sµν. For this, we first go back to the representation Mµν and
introduce

Ji := 1

2
εi j k M j k

Ki := Mi 0 =−M0i , i = 1,2,3.
(4.21)

Using (4.15), it is straightforward to verify

[Ji , J j ] = iεi j k Jk [Ji ,K j ] = iεi j k Kk [Ki ,K j ] =−iεi j k Jk . (4.22)

J satisfies the angular momentum algebra and hence is evidently related to the generator of
spatial rotations. K in turn corresponds to the generator of LORENTZ boosts.

It is instructive to change the basis of generators once more and introduce

A = 1

2
(J + iK ), B = 1

2
(J − iK ). (4.23)
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These satisfy

[Ai , A j ] = iεi j k Ak [Bi ,B j ] = iεi j k Bk [Ai ,B j ] = 0. (4.24)

Therefore, the LORENTZ algebra is equivalent to two sets of angular momentum algebras A
and B spins. These spin algebras obviously commute. We conclude that we can classify all
possible representations of the LORENTZ algebra simply in terms of all possible represen-
tations of these angular momentum algebras. The latter are enumeratable in terms of the
eigenvalue of the squared spins A2 and B 2. For a given total spin, the eigenvectors can fur-
ther be labeled by the eigenvalues of one spin component, say A3 and B3

A2 |Aa〉 = A(A+1) |Aa〉 , A3 |Aa〉 = a |Aa〉 , a =−A, . . . , A

B 2 |Bb〉 = B(B +1) |Bb〉 , B3 |Bb〉 = b |Bb〉 , b =−B , . . . ,B.
(4.25)

For a given set of total spin quantum numbers A and B , the representation space is spanned
by |Aa,Bb〉 = |Aa〉⊗ |Bb〉 and is

N = (2A+1)(2B +1) dimensional. (4.26)

hence, the index i of the N -tuple field ϕi simply labels all possible values of a and b

i = (a,b). (4.27)

In this fashion, we have found all possible irreducible representations of the LORENTZ alge-
bra. Of course, by means of tensor products, we can combine different representations to
form further reducible representations.
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4.3 Spinors

Apart from the trivial scalar representation, the simplest representation is a spin 1
2 represen-

tation,

(A,B) =
(
0,

1

2

)
⇒ D(A) = 0, D(B ) = σ

2
, (4.28)

where σi are the PAULI matrices. The corresponding fields have two components,

ϕi → ξα, α= 1,2. (4.29)

The representations of J and K are

D(J ) = σ

2
, D(K ) = i

σ

2
. (4.30)

We can summarize the parameters εµν of the LORENTZ transformation into two 3-vectors:

(ε23,ε31,ε12) =: −θ, (ε10,ε20,ε30) =ω (4.31)

such that the representation of the LORENTZ transformation is given by

D(Λ) = exp(iθ ·D(J )+ iω ·D(K )), (4.32)

or explicitly

a β
α := D(Λ) β

α = exp

(
i

2
θ ·σ− 1

2
ω ·σ

) β

α

(4.33)

⇒ ξ′α(x ′) = a β
α ξβ(x). (4.34)

As can be verified explicitly, the matrix a is a 2×2 matrix with complex entries and satisfies

det a = 1. (4.35)

Thus it has 6 real parameters which are exhausted by θ and ω. The set of matrices of this
type form the matrix group

S︸︷︷︸
det=1

L︸︷︷︸
linear

( 2︸︷︷︸
2×2

,C). (4.36)

We call the field ξα(x) also a “SL(2,C) spinor”. The above equations (4.32) and (4.33) de-
scribe a homomorphism between the LORENTZ group SO(3,1) and SL(2,C), where SL(2,C)
cores each element of SO(3,1) twice (as is already familiar from SU (2) ↔ SO(3) in quantum
mechanics). Let ω= 0. If we rotate θ1 by 2π, we have Λ ν

µ = δνµ, whereas a →−a in SL(2,C).
The identity is reached again after a 4π rotation. To close this section, we can also study the
complex conjugate spinor (ξα)∗ ≡ ξα̇ (dotted spinor), which transforms as

η′α̇(x ′) = (a∗) β̇
α̇ ηβ̇(x) ((a∗) β̇

α̇ ≡ (a β
α )∗). (4.37)

From the complex conjugate form of a transformation in (4.33) we can deduce backwards
that this corresponds to a representation

D(A) =−σ
∗

2
, D(B ) = 0 (4.38)

which is an (A,B) = (1
2 ,0

)
representation.
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4.4 Spinors and 4-vectors

Since the dimension of a representation of the LORENTZ group is given by N = (2A+1)(2B+1),
4-vectors (being related to integer spins) have to be related to the mixed representation:

2×2∗ :

(
0,

1

2

)
×

(
1

2
,0

)
=

(
1

2
,

1

2

)
. (4.39)

In practise, this implies that there must be a relation between an object with indices (α, β̇)
and one with index µ. For this, we define the auxiliary objects

(σµ)αβ̇ = (1,σ), (σ̄µ)α̇β = (1,−σ). (4.40)

It is suggestive to use the 2D ε-tensor as a metric in spinor space, e. g.

(σ̄µ)α̇β := εα̇γ̇εβδ(σ̄µ)γ̇δ. (4.41)

Then it can straightforwardly be checked that σµ and σ̄µ are related by

(σ̄µ)α̇β = [(σµ)αβ̇]∗. (4.42)

With these definitions, it also follows that

1

2
Tr(σ̄µσν) = δµν , (σµ)αβ̇(σ̄µ)γ̇δ = 2δδαδ

γ̇

β
(4.43)

and σµσ̄ν+σνσ̄µ = σ̄µσν+ σ̄νσµ = 2gµν. (4.44)

using the explicit representation (4.33) for a LORENTZ transformation a β
α , we obtain the

important formula

σµΛ
µ
ν = aσνa† . (4.45)

This equation connects the LORENTZ transformation of a 4-vector,Λµν, with the transforma-
tion matrices a and a† of a spinor and its complex conjugate.

This suggests to define the spinor representation of 4-vector

x := xµσµ =
(

x0 +x3 x1 − ix2

x1 + ix2 x0 −x3

)
. (4.46)

Equation (4.45) now gives us the transformation properties

x ′ = x ′µσµ =σµΛµνxν
(4.45)= aσνa†xν

= axa†. (4.47)

In turn, we can construct a 4-vector out of two independent spinors ξα,ηα̇:

Vµ := ξα(σµ)αβ̇η
β̇. (4.48)
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By an argument inverse to (4.47), it is possible to show that Vµ transforms as a 4-vector under
LORENTZ transformations if ξα and ηα̇ transform as spinors.

The general relation between a vector an a mixed spinor object is hence given by

Vαβ̇ =V µ(σµ)αβ̇, V µ = 1

2
(σ̄µ)β̇αVαβ̇. (4.49)

So far, we have written the LORENTZ transformations a and a∗ of the SL(2,C) spinors explic-
itly in terms of PAULI matrices. However, there is also a representation of the generators in
terms of objects that satisfy the LORENTZ algebra directly. These are given by

(σµν) β
α := i

2
(σµσ̄ν−σνσ̄µ) β

α

(σ̄µν)α̇
β̇

:= i

2
(σ̄µσν− σ̄νσµ)α̇

β̇
.

(4.50)

Each of these two objects satisfy the LORENTZ algebra (4.15) with Mµν → σµν or σ̄µν. So we
have D1/2(Mµν)

∼=σµν or σ̄µν.

Hence, the LORENTZ transformation can be written as

ξ′α(x ′) = a β
α ξβ(x) = exp

(
− i

4
εµνσµν

) β

α

ξβ(x) (4.51)

or for ηα̇ = εα̇β̇ηβ̇ as

η′α̇(x ′) = (εa∗ε⊺)α̇
β̇
ηβ̇(x) = exp

(
− i

4
εµνσ̄µν

)α̇
β̇

ηβ̇(x). (4.52)
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4.5 Aspects of spinor calculus

For a given spinor ξα, we wish to identify the dual spinor ξα such that the inner product of the
two forms a scalar product which is invariant under LORENTZ transformations. As already
suggested in the preceding section, this metric is given by the anti-symmetric tensor in two
dimensions,

εαβ = εα̇β̇ = εαβ = εα̇β̇ = iσ2 =
(

0 1
−1 0

)
, (4.53)

such that ξα = εαβξβ, ηα̇ = εα̇β̇ηβ̇. (4.54)

The resulting LORENTZ invariance of the inner product ξαζα = εαβξβζα will be discussed in
the exercises. Since ε is anti-symmetric, some care is necessary, as some manipulations seem
non-obvious if compared to vector calculus in R3 orM. For instance,

ξα =−εαβξβ
= ξβεβα

ηα̇ =−εα̇β̇ηβ̇

= ηβ̇εβ̇α̇
(4.55)

because −εαβξβ =−εαβεβγ︸ ︷︷ ︸
=−δγα

ξγ = ξα.

In (4.55), we observe that no explicit sign appears if the indices are arranged such that they
are contracted from upper-left to lower-right, or north west – south east.

If we wish to drop the indices in our notation, we have to agree on this convention

ξζ := ξαζα =−ξαζα. (4.56)

Another useful notation is inspired by matrix multiplication rules4, where we consider the
left-hand spinor (not the dual spinor) as a transposed spinor

ξζ= ξαζα = εαβξβζα = ξβεαβζα
=−ξβεβαζα =−ξ⊺εζ= ξ⊺ε⊺ζ (4.57)

where ε⊺ =−ε. (4.58)

In this latter notation, we can write LORENTZ transformations in the following manner:

ξ′α = a β
α ξβ⇒ ξ′ = aξ or ξ′⊺ = ξ⊺a⊺. (4.59)

4e. g. also the scalar product of two Euclidean vectors x and y , x · y , can be viewed as a matrix multiplication
where the left vector is considered as a transposed vector x · y = x⊺y
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5 Simple Spinor field theories

Having identified the spinor fields ξα(x),ηα̇(x) as the simplest non-trivial representation
of the LORENTZ group, let us try to construct field theories for these spinors by means of
LORENTZ invariant LAGRANGIANS.

5.1 Kinetic part

Using (4.49), we can immediately write a derivative in spinor space:

∂µ→ ∂αβ̇ = (σµ)αβ̇∂µ (5.1)

whereas scalar fields involved always two derivatives to form a LORENTZ scalar (∂µφ)(∂µφ),
it is already possible to write down a single derivative term in the spinor case which is never-
theless bilinear in the fields and thus no total derivative:

η∗α(σµ)αβ̇∂µη
β̇ = η†σµ∂µη, where (ηα̇)∗ = (η∗)α. (5.2)

Since the spinor fields are complex, (5.2) is not guaranteed to be real. Hence, we may try

L
?= η†σµ∂µη+h.c. = η†σµ∂µη+ (∂µη

†)σµη

= ∂µ(η†σµη). (5.3)

However, this combination projecting on the real part is a total derivative and hence does
not give rise to nontrivial equations of motion. Therefore, the only combination left is the
imaginary part

L kin
L = i

2
(η†σµ∂µη− (∂µη

†)σµη)

=:
i

2
η†σµ∂̂µη.

(5.4)

This is the simplest possible kinetic term. Similarly, we obtain for ξ:

L kin
R = i

2
ξ∗
β̇

(σ̄µ)β̇α∂̂µξα = i

2
ξ†σ̄µ∂̂µξ. (5.5)

Both LAGRANGIANS exhibit a continuous symmetry of phase transformations,

ξ′(x) = eiθξ(x),

η′(x) = eiθ′η(x),

ξ′∗(x) = e−iθξ∗(x)

η′∗(x) = e−iθ′η∗(x),
(5.6)

that leave the action invariant. These symmetries are also called chiral symmetries, each one
forming a U (1) group: U (1)R ,U (1)L .
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5.2 Mass term Particles and Fields

5.2 Mass term

Analogously to bosonic field theories, we expect that a mass term in the LAGRANGIAN has to
be quadratic in the fields such that excitations propagate according to the relativistic disper-
sion relation of a point particle. As the kinetic term is linear in derivatives (∼ 4-momenta),
we expect the quadratic term in the LAGRANGIAN to be linear in the mass.

The simplest quadratic LORENTZ scalars are

ηα̇εα̇β̇η
β̇ = η⊺εη, ξαε

αβξβ = ξ⊺εξ. (5.7)

Explicitly, this yields, e. g.

ηα̇εα̇β̇η
β̇ = η1η2 −η2η1. (5.8)

If the components η1 and η2 are ordinary commuting numbers, this expression is identically
zero.

However, with a glimpse into quantum theory, we expect that the connection between spin
and statistics eventually implies that the excitations of the spinor fields obey FERMI-DIRAC

statistics (spin-statistics theorem): in a quantum setting, we will associate η1 and η2 with
operators that create a spinor excitation above the vacuum. Since these excitations have
to ober FERMI-DIRAC statistics, these creation operators have to anti-commute, i. e. η1η2 =
−η2η1.

For operators, this property seems straightforwardly implementable. Nevertheless, here we
do not plan to quantize, but stay within classical field theory. Still, we wish to realize the
correct statistical properties of the excitations.

Evidently, both requirements cannot be satisfied by pure numbers η1,η2 ∈ C. Still, there
exists a consistent set of numbers, defined in terms of conventional algebraic axioms, that
even facilitates the definition of derivatives and integrals, with the special property that these
numbers anti-commute. These are the GRASSMANN numbers5.

If we interpret η1,η2,ξ1,ξ2 to be GRASSMANN-valued, we have η1η2 =−η2η1, and thus (5.8) is
nonzero. Hence, a real mass term is given by

L m
L =−1

2
(mLη

⊺εη−m∗
Lη

†εη∗)

L m
R =−1

2
(mRξ

†εξ∗−m∗
Rξ

⊺εξ),
(5.9)

where the mass parameters mL and mR may be complex. Here we have used (θχ)∗ = χ∗θ∗

for GRASSMAN numbers (as is familiar from matrices). Also, ε† = ε⊺ =−ε has been used.

These mass terms are called MAJORANA masses. The MAJORANA mass breaks the chiral sym-
metry U (1)L or U (1)R completely. If a MAJORANA mass exists, the corresponding NOETHER

charges are not conserved. In particle physics, no MAJORANA mass term has been verified

5GRASSMANN numbers can be treated abstractly, if we still wish to represent them in terms the body of real
numbers, we are lead to matrix representations, see exercises
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5.3 The Dirac spinor Particles and Fields

(yet). Still, the mass of the neutrinos may be associated with a MAJORANA mass term; if so,
the non-conservation of the NOETHER charge would translate into violations of Lepton num-
ber conservation. A possible signature in terms of a neutrinoless double β decay is actively
searched for.

In condensed-matter systems, MAJORANA fermions can arise as an effective degree of free-
dom. This is currently a very active field of research.

Whereas the above kinetic and mass terms can exist for each representation
(1

2 ,0
)

and
(
0, 1

2

)
separately, there is another possible mass term, which exists in the simultaneous presence
of the two spinors:

L m
D =−(mξ†η+m∗η†ξ). (5.10)

This is the DIRAC mass term. It does not break the chiral symmetries completely: choosing
θ = θ′ in (5.6), the spinors transform as(

η′

ξ′
)
= eiθ

(
η

ξ

)
,

(
η′∗

ξ′∗
)
= e−iθ

(
η∗

ξ∗
)
. (5.11)

These simultaneous U (1)L and U (1)R transformations form also a U (1) group which is called
a vector U (1)V . The corresponding NOETHER charge is positive for η,ξ and negative for
η∗,ξ∗.

Hence, this symmetry is similar to the U (1) symmetry for a complex scalar. The NOETHER

charge can be associated with particle number or electric charge upon coupling to a Maxwell
field.

5.3 The Dirac spinor

Whereas the kinetic terms as well as the MAJORANA mass term can be formulated for each
SL(2,C) spinor ξ or η (WEIL spinors) separately, the DIRAC mass term requires the simulta-
neous presence of both WEYL spinors and provides for a bilinear coupling. Hence, it is useful
to introduce the combined 4-spinor

ψ(x) =
(
ηα̇(x)
ξα(x)

)
, (5.12)

which is a DIRAC spinor, obviously belonging to the
(1

2 ,0
)⊕(

0, 1
2

)
representation of the LORENTZ

group. We obtain a compact notation for the LAGRANGIANS by also summarizing the (gener-
alized) PAULI matrices as

γµ :=
(

0 (σ̄µ)α̇β

(σµ)αβ̇ 0

)
(5.13)

or, more explicitly

γ0 =
(

0 1

1 0

)
, γ=

(
0 σ

−σ 0

)
. (5.14)
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5.3 The Dirac spinor Particles and Fields

These are the DIRAC matrices. They occur here in the so-called chiral representation (several
other representations are also used in the literature). Independently of the representation,
the γ matrices satisfy (c. f. (4.44))

γµγν+γνγµ = {
γµ,γν

}= 2gµν ·1. (5.15)

Equation (5.15) can be viewed as the defining property of the DIRAC matrices. Mathemati-
cally, the DIRAC matrices form the base elements of a CLIFFORD algebra, i. e. an algebra of
elements that close under the anti-commutator.

The generator of LORENTZ transformations in the DIRAC representation can also be con-
structed from those of the WEYL spinors, c. f. (4.50):

σµν = i

2
[γµ,γν] =

(
(σ̄µν) β

α 0
0 (σµν)α̇

β̇

)
. (5.16)

Hence, the LORENTZ transformed spinor reads

ψ′(x ′) = D( 1
2 ,0

)⊕(0, 1
2 )(Λ)ψ(x) = exp

(
− i

4
εµνσµν

)
ψ(x) =: Aψ(x). (5.17)

The 4×4 matrix A is the direct analogue of the transformation matrix a. From (4.51) and (4.52),
we can read off

(Aψ(x))α̇α =
(

(εa∗ε⊺)α̇
β̇

0

0 a β
α

)(
ηβ̇(x)
ξβ(x)

)
. (5.18)

Here, we have used the SL(2,C) spinor indices α̇,α in order to make the SL(2,C) content
explicit. Of course, working directly with the DIRAC spinor, it is more natural to summarize
the components for α̇ = 1,2, α = 1,2 into one index ψγ(x),γ = 1,2,3,4, of the 4-component
spinor ψ(x).

With the aid of another definition,

Ā := γ0 A†γ0, (5.19)

together with (4.45), it is straightforward to verify that

ĀγµA =Λµνγν. (5.20)

This equation emphasises the relation between the LORENTZ transformations of the DIRAC

spinor and that of the 4-vector of DIRAC matrices γµ, as the transformations of the spinor
indices of the γ′s (LHS) can be written as a LORENTZ transformation of the vector index
(RHS).

The bar symbol in (5.19) is used to denote DIRAC conjugation. In addition to complex conju-
gation, it involves a multiplication with γ0 for each index. It is useful to think of γ0 as a spin
metric, i. e., it relates spinor space to its corresponding dual vector space. The elements of
this dual space are DIRAC conjugated spinors:

ψ̄ :=ψ†γ0. (5.21)
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5.3 The Dirac spinor Particles and Fields

In fact, this spinor occurs naturally, if we consider the kinetic LAGRANGIAN for the DIRAC

spinor

L kin
D : =L kin

L +L kin
R = i

2
ψ̄γµ∂̂µψ

= i

2
(ψ̄γµ∂µψ)− i

2
((∂µψ̄)γµψ)

= iψ̄γµ∂µψ− i

2
∂µ(ψ̄γµψ)︸ ︷︷ ︸

No contribution to EOM

. (5.22)

Hence, the action can be written as

Skin
D =

ˆ
d4x iψ̄γµ∂µψ. (5.23)

Similarly, the DIRAC mass term (for a real mass m = m∗) can compactly be written as

L n
D =−mψ̄ψ. (5.24)

For an analysis of chiral symmetries in the DIRAC notation, it is useful to introduce

γ5 := iγ0γ1γ2γ3 =
(−1 0

0 1

)
, (5.25)

where the first equality holds in general, and the second is particular for the chiral represen-
tation.

In the chiral representation, it is obvious that γ5 can be used to define chiral projectors

PR = 1+γ5

2
, PL = 1−γ5

2
, satisfying (5.26)

P 2
R,L = RR,L , PR PL = 0 = PLPR and PR +PL =1 (5.27)

such that ψR := PRψ=
(

0
ξα

)
, ψL := PLψ=

(
ηα̇

0

)
. (5.28)

Before we analyse the chiral symmetries, let us briefly verify the manifest LORENTZ invari-
ance of the DIRAC theory:

SD =
ˆ

d4x (iψ̄γµ∂µψ−mψ̄ψ). (5.29)

Since ψ′ = Aψ, if follows ψ̄′ = ψ̄Ā (using γ2
0 =1). Let us explicitly study the kinetic part:

ψ̄′γµ∂′µψ
′ = ψ̄ĀγµΛ ν

µ ∂νAψ

= ψ̄ĀγµAΛ ν
µ ∂νψ

(5.20)= ψ̄Λ
µ
ϱγ

ϱ Λ ν
µ ∂ν︸ ︷︷ ︸

gµσΛσν∂ν

ψ

= ψ̄gµσΛ
µ
ϱΛ

σ
ν︸ ︷︷ ︸

=gϱν

γϱ∂νψ= ψ̄γν∂νψ. (5.30)
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5.3 The Dirac spinor Particles and Fields

Of course, the invariance was already clear from the SL(2,C) construction. But this example
shows manifestly that invariant scalars arise if both vector as well as DIRAC spinor indices are
fully contracted. From the invariance of the DIRAC mass term in the SL(2,C) construction, it
follows that Ā A =1 (which can be verified straightforwardly) such that

ψ̄′ψ′ = ψ̄ψ. (5.31)

transforms as a scalar. Similarly, we can justify that ψ̄γµψ transforms as a vector and ψ̄σµνψ
as a tensor under LORENTZ transformations. Since we have γ5 → −γ5 under parity xi →
−xi , the combination ψ̄γ5ψ is a pseudoscalar and ψ̄γ5γµψ a pseudovector under LORENTZ

transformations. Note that only the open LORENTZ indices are relevant for this classification.
With respect to spinor space, all these expressions are scalars anyway.

Concerning the chiral transformations U (1)L ×U (1)R of ϱ and η, these can equivalently be
represented by their linear combinations

θ = θ′ : U (1)V : ψ′ = eiθψ, ψ̄′ = ψ̄e−iθ

θ =−θ′ : U (1)A : ψ′ = eiγ5θψ, ψ̄′ = ψ̄eiγ5θ.
(5.32)

As discussed in the exercises, γ5 anticommutes with all γ′µs:{
γµ,γ5

}= 0. (5.33)

With this property, we can verify the invariance of the kinetic term under the U (1)A, the so-
called axial transformation:

U (1)A : ψ̄′γµ∂µψ= ψ̄eiγ5θγµ∂µeiγ5θψ

= ψ̄γµe−iγ5θ∂µeiγ5θψ= ψ̄γµ∂µψ. (5.34)

The mass term ∼−mψ̄ψ, however, is not invariant under axial transformations. By contrast,
both kinetic and mass terms are invariant under the vector transformations U (1)V in agree-
ment with the observations in the SL(2,C) formalism.
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5.4 Dirac equation

Since the DIRAC spinors is a complex object (complex-GRASSMANN-valued), we can use the
same trick as for complex scalar fields and treat ψ and ψ̄ as formally independent for the
variational principle. Hence, we obtain the equation of motion by varying the action (5.29)
e. g. with respect to ψ̄:

0 = δ

δψ̄
SD = (iγµ∂µ−m)ψ(x) . (5.35)

This is the DIRAC equation. In the following, let us just recall a few basic properties of this
relativistic spinor theory. In order to verify that m indeed has the meaning of mass in the
sense of a relativistic point particle, let us multiply (5.35) with (−iγν∂ν−m):

0 = (−iγν∂ν−m)(iγµ∂µ−m)ψ= (γµγν︸ ︷︷ ︸
symm.︷ ︸︸ ︷
∂µ∂ν +m2)ψ

= 1

2

{
γµ,γν

}
︸ ︷︷ ︸

=gµν

+ 1

2
[γµ,γν]︸ ︷︷ ︸

antisymm.

= (∂2 +m2)ψ(x). (5.36)

Hence, the solutions of the DIRAC equation also satisfy the KLEIN-GORDON equation and
thus the solutions obey the relativistic energy-momentum relation with mass m. This sug-
gests as an ansatz

ψ(x) = u(p)e−ipx , where p2 = m2. (5.37)

In the chiral basis, the spinor u(p) has to satisfy[(
0 σ̄ ·p

σ ·p 0

)
−

(
m 0
0 m

)]
u(p) = 0. (5.38)

We observe that (p ·σ)(p · σ̄) = pµpν
1

2
(σµσ̄ν+σνσ̄µ)︸ ︷︷ ︸

=gµν

= p2 = m2 and hence the DIRAC equa-

tion is solved by

u(p) =
(√

p · σ̄ξp
p ·σξ

)
(5.39)

where ξ is an arbitrary SL(2,C) spinor. We can check this solution:[(
0 σ̄ ·p

σ ·p 0

)
−

(
m 0
0 m

)](√
p · σ̄ξp
p ·σξ

)
=

(√
pσ̄(

√
(σ̄p)(σp)−m)ξp

pσ(
√

(σp)(σ̄p)−m)ξ

)
= 0.

Possible bose spinors are ξS =
(
1
0

)
,

(
0
1

)
(GRASSMANN-valued number) such that (5.39) repre-

sents two solutions corresponding to spin-up ξ1 or spin-down ξ2 along the 3-direction, i. e.
eigenvalues to p3σ3.
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The solutions are normalized to

ūr (p)uS(p) = 2mδr s

or u†r (p)uS(p) = 2Epδ
r s , Ep =

√
p2 +m2

(5.40)

which is straightforwardly verifiable. In addition, there are also negative frequency solu-
tions

ψ(x) = v(p)eipx , p2 = m2, p0 > 0 (5.41)

where v(p) =
( p

pσηS

−√
pσ̄ηS

)
with spin base vectors ηS ,S = 1,2.

The latter are normalized to

v̄ r (p)vS(p) =−2mδr S , v†r (p)vS(p). (5.42)

The u and v spinors are also mutually orthogonal,

ūr (p)vS(p) = v̄ r (p)u(p) = 0. (5.43)

In particle-physics processes, one is often interested in spin-summed results (e. g. if the spin
of a single particle is not measured by the detector). For these, let us finally mention the
following spin sums ∑

S
uS(p)ūS(p) = γ ·p +m∑

S
vS(p)v̄S(p) = γ ·p −m.

(5.44)

The frequently occuring combination γµpµ = γ·p is often abbreviated by the FEYNMAN slash
γµpµ = /p.
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5.5 Rarita-Schwinger spinors

So far, we have encountered the trivial spin-0 (scalar-fields) and the nontrivial spin- 1
2 (WEYL

spinors, DIRAC spinors), and spin-1 (vector fields, photon) representations of the LORENTZ

group. In classical field theory, it is straightforward to construct higher-spin representations
and their corresponding free theories (interacting theories which satisfy all consistency cri-
teria can be more difficult).

As an example, let us study the spin- 3
2 case. More concretely, we wish to compose a field ψµ

such that it unifies properties of a DIRAC spinor (with 4 spinor components with suppressed
indices) as well as a vector field with indexµ= 0,1,2,3. So, in totalψµ has 16 complex compo-
nents. Since vectors belong to the

(1
2 , 1

2

)
representation and DIRAC spinors to the

(1
2 ,0

)⊕(
0, 1

2

)
representation, the general object ψµ is an element of the tensor product space(

1

2
,

1

2

)
⊗

((
1

2
,0

)
⊕

(
0,

1

2

))
=

[(
1

2
,

1

2

)
⊗

(
1

2
,0

)]
⊕

[(
1

2
,

1

2

)
⊗

(
0,

1

2

)]
. (5.45)

Now, recall from the summation of angular momenta that the tensor product of two spin- 1
2

gives a spin-1 as well as a scalar spin-0 component:

1

2
⊗ 1

2
= 1⊕0 (5.46)

or, using the notation that counts the dimensions of the Hilbert spaces,

2∗2 = 3+1. (5.47)

Hence, (5.45) yields(
1

2
,

1

2

)
⊗

((
1

2
,0

)
⊕

(
0,

1

2

))
=

(
1,

1

2

)
⊕

(
0,

1

2

)
⊕

(
1

2
,0

)
⊕

(
1

2
,1

)
=

[(
1,

1

2

)
⊕

(
1

2
,1

)]
︸ ︷︷ ︸
RARITA-SCHWINGER

⊕
[(

0,
1

2

)
⊕

(
1

2
,0

)]
︸ ︷︷ ︸

DIRAC

. (5.48)

We observe that this tensor product contains DIRAC spinors as well as the new terms
[(

1, 1
2

)⊕ (1
2 ,1

)]
,

and thus is reducible into a DIRAC part that we already know and a new part which we will
call a RARITA-SCHWINGER spinor6.

It is, in fact, easy to get rid off the DIRAC part by noting that the object (γµψµ) is a scalar
with respect to the LORENTZ index structure but still features a DIRAC index. Hence for a
general ψµ, the object χ = γµψµ transforms as a DIRAC spinor and thus corresponds to the[(

0, 1
2

)⊕ (1
2 ,0

)]
part of ψµ.

In turn, those fields ψµ that satisfy the irreducibility condition

γµψµ = 0 (5.49)

do not contain DIRAC spinor elements and hence transform as
[(

1, 1
2

)⊕ (1
2 ,1

)]
representa-

tion of the LORENTZ group. The irreducibility condition (5.49) has important consequences

6Incidentally, RARITA and SCHWINGER’s original 3
4 -page paper deals with the full reducible object.
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for the construction of a LAGRANGIAN. For instance, one might naively try to write down a
symmetrically looking mass term:

ψ̄µψµ = ψ̄µgµνψν = 1

2
ψ̄µ

{
γµ,γν

}
ψν

= 1

2
ψ̄µγ

µγνψν︸ ︷︷ ︸
=0

+1

2
ψ̄µ γνγµ︸ ︷︷ ︸

γµγν−[γµ,γν]

ψν

= 1

2
ψ̄µγ

µγνψν− 1

2
ψ̄µ[γµ,γν]ψν

= iψ̄µσ
µνψν, σµν = i

2
[γµ,γν]. (5.50)

We observe the mass term, in fact, hast to be anti-symmetric in the LORENTZ indices of
the RARITA-SCHWINGER field. A similar argument applies to the building block of a kinetic
term:

ψ̄µγν∂κψλ,

implying that all indices must be contracted in an anti-symmetric fashion. This is possible
with the aid of the ε tensor. In order to preserve parity invariance, we amend this building
block with another γ5 factor. The resulting LAGRANGIAN for the RARITA-SCHWINGER field
reads

L =−1

2
ψ̄µ(εµνκλγ5γν∂κ− imσµλ)ψλ. (5.51)

Correspondingly, the field equation yields

(εµνκλγ5γν∂κ− imσµλ)ψλ = 0. (5.52)

Spin- 3
2 fields are indeed known and used in physics for the description of spin- 3

2 bound states
in the theory of the strong interactions. An example is given by the ∆ resonances of the
nucleon which are bound states of 3 quarks with all spins 1

2 aligned to yield a spin 3
2 state

∆− : ddd, ∆0 : udd, ∆+ : uud, ∆++ : uuu,

each having a lifetime ∼ 5 · 10−24 s and commonly decaying to (p+,n0) and (π+,π−,π0) de-
pending on the charge state.

Elementary particles of spin- 3
2 which are not bound-states have not been observed so far.

In fact, a straightforward perturbative quantization of spin- 3
2 fields leads to inconsistencies

(perturbatively nonrenormalizable). These inconsistencies can be (partly) resolve in super-
symmetric theories, where the RARITA-SCHWINGER spinor becomes the superpartner of the
graviton and is called gravitino.
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6 Interacting field theories with spinors

6.1 Yukawa theories

For the construction of scalar theories, we have used a criterion of simplicity. For the inter-
actions this has been partly related to the dimensionality of the interaction terms, e. g. the
λφ4-term in d = 4 dimensions has a dimensionless coupling constant [λ] = 0. For a simi-
lar argument for spinor theories, we first need the dimensionality of the spinor field. With
regard to the kinetic term

Skin
D =

ˆ
d4x︸ ︷︷ ︸
−4

iψ̄γµ ∂µ︸︷︷︸
1

ψ, (6.1)

we read off that [ψ̄ψ] = 3 and hence

[ψ] = 3

2
. (6.2)

The same result follows from the mass term −´ d4xmψ̄ψ.

Recalling that scalar fields have mass dimension [φ] = 1, the simplest interaction term which
yields a LORENTZ scalar is

SYuk =−
ˆ

d4x︸ ︷︷ ︸
−4

h φ︸︷︷︸
1

ψ̄ψ︸︷︷︸
3

. (6.3)

This is the so-called YUKAWA interaction describing the interaction of two DIRAC spinors
with a scalar field. Historically, this has been first used for the description of the pion (scalars)
– nucleon (spinors) interaction. The full action of a typical (simple) YUKAWA theory is

S =
ˆ

d4x

[
ψ̄i/∂ψ+ 1

2
(∂µφ)(∂µφ)−hφψ̄ψ−V (φ)

]
. (6.4)

Here we have ignored a possible DIRAC mass term which would break the axial symmetry.
Actually, also the YUKAWA interaction (6.3) breaks the chiral symmetry as

ψ̄ψ
axialU (1)→ ψ̄eiγ5θeiγ5θψ= ψ̄e2iγ5θψ. (6.5)

For generic θ ∈ [0,2π],e2iγ5θ is a non-trivial 4×4 matrix which cannot be compensated by a
transformation of a real scalar field φ ∈R. However, if we choose θ = π

2 , we have

e2iγ5θ = cos(2θ)+ iγ5 sin(2θ) in general (6.6)

θ = π

2
: eiπγ5 = cosπ=−1

and hence: ψ̄ψ→−ψ̄ψ. If we now combine this specific axial transformation with the Z2-
symmetry of the scalar field φ→−φ (provided that V (φ) is Z2 symmetric), the YUKAWA the-
ory of (6.4) is invariant under the discrete symmetry:

φ→−φ, ψ→ eiπ2 γ5ψ, ψ̄→ ψ̄eiπ2 γ5 . (6.7)

49



6.1 Yukawa theories Particles and Fields

note that the DIRAC mass term would not be compatible with (6.7). In turn, if we impose
the symmetry (6.7), the spinor field is massless. The mass of the scalar field depends on the
parameters in the potential, e. g. if we have

V (φ) = 1

2
m2φ2 + λ

4!
φ4 (6.8)

the scalar field is massive. Now, we know that the Z2 symmetry in the scalar sector can be
broken spontaneously if V (φ) has minima different from φ= 0, e. g. for

V (φ) =−1

2
µ2φ2 + λ

4!
φ4 (6.9)

⇒φmin =±v =±
√

6µ2

λ
. (6.10)

Let us assume that φ picks the value φmin = v as its ground state. Expanding φ about this
ground state φ(x) = v +σ(x), we find the action (see (3.8))

S =
ˆ

d4x

[
ψ̄i/∂ψ+ 1

2
(∂µσ)(∂µσ)

−hvψ̄ψ−hσψ̄ψ−
(

1

2
(2µ2)σ2 + 1

3!
λvσ3 + 1

4!
λσ4

)]
. (6.11)

Here, we can read off the mass m2
σ = 2µ2 of the scalar excitation σ. In addition, we observe

the occurrence of a DIRAC mass term −(h v)ψ̄ψ, such that the DIRAC spinors have also ac-
quired a mass

mψ = h v = h

√
6µ2

λ
. (6.12)

The remaining terms are interactions of YUKAWA type ∼σψ̄ψ or scalar self-interactions.

We conclude that the breaking of the Z2 symmetry in the scalar sector also extends to the
YUKAWA sector, spontaneously generating a mass for the DIRAC spinor which is otherwise
kept zero if the symmetry is preserved. This is a first simple but non-trivial example for the
fact that DIRAC spinor masses can be zero on the level of the action but then be generated by
spontaneous symmetry breaking in a scalar sector.

The present model is often used as a toy-model for the sector of the Standard model of parti-
cle physics involving only the HIGGS boson and the top quark (as the heaviest quark). As the
model only features a discrete symmetry, no GOLDSTONE bosons occur in the broken phase
(as is also true for the standard model, however, by virtue of the HIGGS mechanism involving
a gauge symmetry).

It is instructive to also study this toy-standard model application of the present model on the
level of parameters and numbers. On the level of the LAGRANGIAN, we have 3 parameters:
h,µ2,λ. This corresponds to the number of measurable quantities in the top-HIGGS sector
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of the standard model:

HIGGS boson mass : mH = 125GeV

top quark mass : mt ≈ 172GeV

Fermi-constant : v = 1√p
2GF

≈ 246GeV.

Using the identification with our model parameters:

mH ↔mσ =
√

2µ2 =p
2µ

mt ↔mψ = hv = h

√
6µ2

λ
.

(6.13)

With λ= 6µ2

v2 we find

µ≈ 88GeV, h ≈ 0.70, λ≈ 0.77. (6.14)

We observe that both coupling constants are of the order of 1. However, λ comes with a
factor of 1/4! in the action. This is not the case for the top-YUKAWA coupling h. Even though
the top-quark is very short-lived with a lifetime of ∼ 5 ·10−25 s and was difficult to discover7

due to its high mass, it plays the most important role for the dynamics of the theory at high
energies among all the other quarks and leptons. Of course, for a proper discussion in the
context of particle physics, a full quantization of the theory is necessary.

7Discovery: 1995 by CDF and DØ at Tevatron, Fermilab
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6.2 Yukawa vs. fermionic theories

In the purely scalar case, we have been able to construct a whole class of models by promot-
ing the real scalar φ ∈ R to a vector φa in an internal symmetry space O(N ). Naively, one
may try to do the same for YUKAWA systems by promoting φ→ φa and similarly promoting
the DIRAC spinor to multiple copiesΨ→Ψa , which are often called flavors in the fermionic
context, a = 1, . . . , N f .

However, it is not fully trivial how to construct a YUKAWA interaction from such rather arbi-
trary building blocks (e. g. try to contract the indices to get a scalar). Moreover, sinceφa ∈RN

for a = 1, . . . , N , φa transforms under O(N ) whereas ψa ,ψ̄a are complex fields and hence
ψ̄aψa is invariant under the unitary group U (N f ). So, the symmetries would not fit.

In the above example, we had the action

S =
ˆ

d4x

[
ψ̄i/∂ψ+ 1

2
(∂µφ)(∂µφ)−hφψ̄ψ−V (φ)

]
, (6.15)

being invariant under Z2 symmetry. However, the symmetry acted rather differently on φ

and ψ, c. f. (6.7). On the other hand, the symmetry transformation looks equivalent on the
level of φ and the fermion bilinear:

φ→−φ, ψ̄ψ→−ψ̄ψ. (6.16)

In fact, this can become a general construction principle for theories with spinors and fur-
ther fields to feature invariance under bigger continuous symmetries.

This construction principle becomes even more visible in a certain limit of the above theory.
Let us take a look at the equations of motion:

(i/∂−hφ)ψ= 0, ∂2φ+V ′(φ)+hψ̄ψ= 0. (6.17)

Obviously, we have two coupled partial differential equations featuring a high degree of non-
linearity.

Let us study a particularly simple limit: Assume that φ is slowly varying or almost constant
in spacetime φ≈const., then, with ∂2φ≈ 0, we get

hψ̄ψ+V ′(φ) = 0. (6.18)

For the simple case V (φ) = 1
2 m2φ2 + λ

4!φ
4, we have

hψ̄ψ+m2φ+ λ

3!
φ3 = 0. (6.19)

Let us further assume that λ
3! ≪ 1, then:

φ=− h

m2
ψ̄ψ, (6.20)
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which is naturally compatible with the symmetry. Even if we included a full potential V (φ), (6.18)
can in principle be expressed as φ= f (ψ̄ψ) at least locally connecting the scalar to a fermion
bilinear. It is instructive to study the action (6.4) in this limit λ≪ 1,∂φ≈ 0:

S =
ˆ

d4x

[
ψ̄i/∂ψ−hφψ̄ψ− 1

2
m2φ

]
. (6.21)

Using the equation of motion (6.20) for φ, we get an action depending solely on the spinor
field:

S =
ˆ

d4x

[
ψ̄i/∂ψ−h

(
− h

m2
ψ̄ψ

)
ψ̄ψ− 1

2
m2

(
− h

m2
ψ̄ψ

)2]
=
ˆ

d4x

[
ψ̄i/∂ψ+ h2

2m2
(ψ̄ψ)2

]
=
ˆ

d4x
[
ψ̄i/∂ψ+ g

2
(ψ̄ψ)2

]
, g = h2

m2
. (6.22)

This is the famous GROSS-NEVEU model, introduced by GROSS and NEVEU in 1974 in two
dimensions as a model with analogies to the strong interactions. The precise statement is
that the theory defined by (6.22) purely in terms of spinors and that of (6.21) defined in terms
of spinors and scalars are completely identical by virtue of the equations of motion (6.20) of
the scalar field.

Of course, beyond the limit λ → 0 and for non-vanishing scalar kinetic terms, the equiv-
alence is only approximate. Incidentally in the quantized version, the exact equivalence
between (6.22) and (6.21) persists to hold. Moreover the equivalence can even hold upon
inclusion of interactions and derivative terms for properties of the long-range physics. This
is an example of universality.

In term, if we had started with the GROSS-NEVEU model (6.22), we could have used the in-
verse construction, defining a scalar field

φ=−g ψ̄ψ (6.23)

to write the action as

S =
ˆ

d4x

[
ψ̄i/∂ψ−φψ̄ψ− 1

2

1

g
φ2

]
. (6.24)

Writing g = h2

m2 and rescaling φ→ hφ would lead to (6.21) again. This construction (which
also exists for the quantum theory) that converts a non-linear fermionic theory into a bilin-
ear (Gaußian) action is known as HUBBARD-STRATONOVICH transformation.

Let us use this construction to introduce YUKAWA models with higher symmetries. E. g. it is
straightforward to upgrade the spinor content to N f flavors ψa , a = 1, . . . , N f :

S =
ˆ

d4x
[
ψ̄a i/∂ψa + g

2
(ψ̄aψa)2

]
. (6.25)

This theory is invariant under flavor rotations

ψa →U abψb , ψ̄a → ψ̄b(U †)ba , (6.26)
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such that U †U =1, i. e. U ∈U (N f ).

In absence of a mass term ∼ ψ̄aψa (which would also be U (N f ) invariant), the model also
has the discrete Z2 axial symmetry (6.7), transforming ψ̄aψa →−ψ̄aψa .

The structure of the interaction suggests to introduce a scalar field

φ=−g ψ̄aψa , (6.27)

leading, as before, to the equivalent action

S =
ˆ

d4x

[
ψ̄a i/∂ψa −φψ̄aψa − 1

2

1

g
φ2

]
. (6.28)

Now, we can add kinetic terms and interaction terms for the scalar field to arrive at a new
YUKAWA theory for N f spinor flavors:

SYuk =
ˆ

d4x

[
ψ̄a i/∂ψa −hφψ̄aψa + 1

2
(∂µφ)(∂µφ)−V (φ)

]
. (6.29)

The model still has the full U (N f ) flavor symmetry. However, the scalar sector is the same
as before. In order to preserve the Z2 symmetry of the fermionic system, we only need a
real scalar φ ∈ R and a Z2 symmetric potential V (−φ) =V (φ). Upon spontaneous symmetry
breaking by a suitable potential with a minimum at φmin = v ̸= 0, all flavors of fermions
acquire the same mass term −mψψ̄

aψa ,mψ = hv . Most importantly, the breakdown of the
Z2 symmetry does not imply the breakdown of flavor symmetry. The mass term preserves
the U (N f ) symmetry.

In order to arrive at a more complex scalar sector, the axial/chiral symmetry on the fermionic
side has to be more complex as well.
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6.3 Models with continuous chrial symmetry

In the exercises, we had already studied a fermionic model with continuous chiral symme-
try:

SN JL =
ˆ

d4x
(
ψ̄i/∂ψ− g

2
((ψ̄ψ)2 − (ψ̄γ5ψ)2)

)
. (6.30)

This is the famous NAMBU-JONA-LASINIO model for the case of one fermion flavor N f = 1.
The model has been invented by Nambu and JONA-LASINIO (and independently by VAKS

and LARKIN) in 1961 by transfering ideas from the BCS theory of superconductivity to the
description of nucleons and mesons in elementary particle physics. Up to the present day
it is frequently used as an effective low-energy model of the strong interactions (low-energy
QCD).

The model is invariant under

UV (1) :ψ→ eiαψ, ψ̄→ ψ̄e−iα

UA(1) :ψ→ eiαγ5ψ, ψ̄→ ψ̄e+iαγ5
(6.31)

as discussed in detail in the exercises. Hence it is also invariant under both chiral symmetries
UL(1),UR (1), which are a linear combination of (6.31).

In the spirit of the HUBBARD-STRATONOVICH transformation, it is natural to introduce two
scalar fields,

φ1 =−g (ψ̄ψ), φ2 =−ig (ψ̄γ5ψ) (6.32)

to rewrite (6.30) as

SN JL =
ˆ

d4x

(
ψ̄i/∂ψ−φ1ψ̄ψ− iφ2ψ̄γ5ψ− 1

2

1

g
(φ2

1 +φ2
2)

)
. (6.33)

Since ψ̄ψ as well as ψ̄γ5ψ are separately invariant under UV (1), the fields φ1 and φ2 trans-
form trivially under this symmetry: φ1,2 → φ2,1. Since the NOETHER charge of this UV (1)
corresponds to particle number, this implies that φ1 and φ2 do not carry particle number (=̂
electric charge, hence are neutral).

In order to identify their transformation under UA(1), we note that

eiαγ5 =1cosα+ iγ5 sinα. (6.34)

This implies that

ψ̄ψ→ ψ̄e2iαγ5ψ= ψ̄ψcos(2α)+ isin(2α)ψ̄γ5ψ

ψ̄γ5ψ→ ψ̄eiαγ5γ5eiαγ5ψ= ψ̄γ5ψcos(2α)+ isin(2α)ψ̄ψ.
(6.35)

We observe that the combination φ1ψ̄ψ+ iφ2ψ̄γ5ψ is invariant under UA(1), if φ1 and φ2

transform as (
φ1

φ2

)
→

(
cos(2α) sin(2α)
−sin(2α) cos(2α)

)(
φ1

φ2

)
. (6.36)
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Interpretingφa , a = 1,2 as an element ofR2, equation (6.36) corresponds to an SO(2) rotation
in the φ1,φ2 plane. This rotation also leaves the scalar mass term ∼ (φ2

1 +φ2
2) invariant as

it corresponds to the scalar product in R2. Since the symmetry groups SO(2)
∼= U (1) are

isomorphic to one another, the complex transformations of ψ and the real transformations
of φ1,φ2 fit perfectly. Note, however that a full axial rotation in UA(1) from α = 0 to α = 2π
covers the SO(2) rotations twice: 2α= 0 to 2α= 4π.

In the language of NOETHER charges this implies that the scalar carries twice the axial charge
of the spinor. These symmetry considerations allow us to finally construct a YUKAWA theory
that exhibits the chiral symmetry of the NJL model

SYuk-NJL =
ˆ

d4x

[
ψ̄i/∂ψ+ 1

2
(∂µφa)(∂µφa)−h(φ1ψ̄ψ+ iφ2ψ̄γ5ψ)−V (φ)

]
(6.37)

where V (φ) depends on φa only through the scalar product φaφa . Note that the symmetry
fixes both YUKAWA interactions to have the same coupling h.

Let us now study the predictions of this model for the particle/mass spectrum in the phase
with spontaneous symmetry breaking if V (φ) develops a vacuum expectation value at

φ0aφ0a = v2. (6.38)

Parametrizing the field as (
φ1(x)
φ2(x)

)
=

(
v +σ(x)
π(x)

)
, (6.39)

the action (6.37) becomes

SYuk-NJL =
ˆ

d4x

[
ψ̄i/∂ψ+ 1

2
(∂µσ)(∂µσ)+ 1

2
(∂µπ)(∂µπ)

−h vψ̄ψ−h(σψ̄ψ+ iπψ̄γ5ψ)−V (σ,π)

]
, (6.40)

where V (σ,π) is the same potential that we have studied in the context of O(N ) models
in (3.20) for the case of only one π field. Hence, we obtain the mass spectrum

mψ = hv, mσ =
√

2µ2, mπ = 0. (6.41)

The massless mass of the π is in agreement with GOLDSTONE’s theorem. The fermions be-
come massive. As the π-field couples to ψ̄γ5ψwhich is a pseudoscalar fermion bilinear, also
π must transform as a pseudoscalar (i. e. with a minus sign under parity).

In their original publications NAMBU & JONA-LASINIO associated the Ψ′s with the nucleon
(proton/neutron), the π-field with a light pion and thus predicted the sigma meson as a
heavy nucleon/anti-nucleon bound-state. Of course, quarks had not yet been invented in
1961. In the modern use of the NJL model, Ψ denotes the quarks and hence mψ is inter-
preted as the constituent quark mass mψ ≈ 300MeV.

With regard to the HUBBARD-STRANOVICH transformation φ1 = v +σ ∼ −g (ψ̄ψ), the non-
vanising expectation value of φ1 is also interpreted as a non-vanishing chiral condensate〈
ψ̄ψ

〉
(in quantum notation).
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Since the mesons (σ,π, . . .) are bound states and not fundamental in contrast to the quarks,
the formation of a bilinear condensate is sometimes also called dynamical symmetry break-
ing. Quantitatively, the vacuum expectation value is related to the pion decay constant
v ≈ 93MeV.

57



7 Field theories of matter and gauge interactions

The most characteristic fact of particle physics is that the interactions among fermionic mat-
ter building blocks is mediated by gauge bosons (e. g. the photon)8. The underlying local
gauge symmetry that we have already encountered in MAXWELL’s theory is largely responsi-
ble for the resulting structures. In G. ’T HOOFT’s words, we are under the spell of the gauge
principle.

7.1 Quantum electrodynamics (QED)

Starting from the MAXWELL LAGRANGIAN (1.60) known from classical electrodynamics,

L =−1

4
FµνFµν− JµAµ, (7.1)

let us try to add fermionic electron/positron degrees of freedom in the form of a DIRAC spinor
field ψ(x), while preserving the local gauge symmetry under gauge transformations:

Aµ(x) → Aµ(x)+∂µΛ(x), Λ(x) : arbitrary. (7.2)

Assuming that the interaction can be written in terms of a suitable choice for the source
Jµ = Jµ[ψ̄,ψ], the action remains invariant, if

S =
ˆ

d4x

[
−1

4
FµνFµν− JµAµ

]
⇒
ˆ

d4x

[
−1

4
FµνFµν− JµAµ− Jµ∂

µΛ

]
IBP=
ˆ

d4x

[
−1

4
FµνFµν− JµAµ+Λ∂µ Jµ

]
(7.3)

the source is conserved, ∂µ Jµ = 0.

Indeed the free DIRAC theory

SD =
ˆ

d4x
[
ψ̄i/∂ψ−mψ̄ψ

]
(7.4)

offers a conserved source: the NOETHER current jµ associated with UV (1) vector symmetry

ψ→ eiαψ, ψ̄→ ψ̄e−iα. (7.5)

We have determined the resulting NOETHER current in the exercises:

jµ = ψ̄γµψ, ∂µ jµ = 0. (7.6)

this suggest to identify Jµ with the NOETHER current

Jµ = e jµ, (7.7)

8Remark: The HIGGS boson is somewhat Janus-faced, it carries matter properties as well as mediates a force
via YUKAWA interactions
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where we have allowed for a coupling constant e that parametrizes the strength of the in-
teractions between the MAXWELL and the DIRAC field. Upon insertion of (7.7) into (7.1) and
adding the DIRAC action (7.4), we arrive at

SQED =
ˆ

d4x

[
−1

4
FµνFµν+ ψ̄i /D[A]ψ−mψ̄ψ

]
(7.8)

where we have used the covariant derivative, c. f. (3.34)

Dµ[A] = ∂µ+ ie Aµ and /D = γµDµ. (7.9)

Equation (7.8) denotes the classical action of Quantum Electrodynamics (which becomes
Quantum, of course, only upon quantization of the fields).

Our construction guarantees, that SQED is invariant under the local gauge symmetry (7.2)
as well as the global vector symmetry (7.5) separately. However, the interesting observation
now is that SQED is fully invariant under a simultaneous local transformation of both fields:

Aµ(x) → Aµ(x)+∂µΛ(x), ψ(x) → e−ieΛ(x)ψ(x), ψ̄(x) → ψ̄(x)eieΛ(x). (7.10)

This is the same type of local U (1) symmetry that we have already encountered for the abelian
HIGGS model in (3.33).

The essential building block is the covariant derivative Dµ[A], which guarantees that

(Dµ[A]ψ) → e−ieΛ(x)(Dµ[A]ψ) (7.11)

– despite the partial derivative – transforms with a simple U (1) phase factor. Already on this
classical level, the theory (7.8) is useful, as (together with a proton field) it offers the relativis-
tic version of the quantum mechanical hydrogen-problem, describing relativistic effects in
atomic physics rather accurately.

QED, however, celebrates its greatest successes in the quantized version for the quantitative
description of the anomalous moment of the electron or LAMB shift effects in atoms. Here,
we plan to go beyond and wish to view this theory as a first simple example of a gauge the-
ory.

7.2 Quantum Chromodynamics (QCD)

The necessity of a further quantum number, i. e., another type of charge for the elementary
constituents became clear from the observation of Baryon resonances with three quarks in
the same flavor and spin state ∣∣∆++〉= |u ↑〉|u ↑〉|u ↑〉

|Ω−〉 = |s ↑〉|s ↑〉|s ↑〉 (7.12)

|∆−〉 = |d ↑〉|d ↑〉|d ↑〉

seemingly contradicting PAULI’s exclusion principle. Upon adding a further quantum num-
ber, the required anti-symmetrization for the fermionic constituents can be realized with
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respect to this new quantum number, called color. As a consequence, processes which can
proceed via different internal values of this quantum number become proportional to it, e. g.
pion decay into two photons,

∼ Nc . (7.13)

According to QFT, the decay proceeds via an internal quark fluctuation. As the quarks now
can occur in differently coloured versions, the process is proportional to the number of colours
Nc . The experimental result is Nc = 3. I. e. in addition to the different quark flavours f =
u,d , s,c,b, t quarks also carry a colour index i = 1,2,3:

ψ(x) =ψi
f (x). (7.14)

In the following, we ignore the flavour and concentrate on the colour index i = 1,2,3. The
above experiments suggest that there is at least a global symmetry in an internal colour space
by which we can transform the spinors:

ψi →ψ′i =U i jψ j . (7.15)

The decisive aspect of this symmetry exerting a strong influence on the resulting dynamics,
however, is that this symmetry turned out to be a local symmetry analogous to the one of
QED:

ψ′i (x) =U i j (x)ψ j (x) (7.16)

where U (x) ∈ SU (Nc ) is a matrix, being an element of the matrix group SU (Nc ), i. e. com-
plex unitary matrices with detU = 1. This local symmetry property cannot be read off from
kinematical observations as the ones given above, but require a close look at the dynamics
or bound-state spectra of the system.

Let us first recall a few basic facts about the LIE groups SU (nc ) and their corresponding LIE

algebra. The complex Nc ×Nc matrices U i j with

U †U =1=UU †, detU = 1 (7.17)

form a representation of SU (Nc ). The exponential map

U = eiH where H = H † (7.18)

parametrizes U in terms of N 2
c −1 real parameters. (7.19)

This implies that H can be spanned by N 2
c − 1 linearly independent hermitean matrices

which serve as generators of SU (Nc ):

U = e−iωaτ
a

, (τa)i j : generator of SU (Nc ) (7.20)

with i , j = 1, . . . , Nc and a = 1, . . . , N 2
c − 1, where ωa are real parameters, and the τa can be

chosen tracefree since

1 = detU = dete−iωaτ
a = e−iωa Trτa

. (7.21)
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For the commutator [τa ,τb], we have

Tr[τa ,τb] = Tr(τaτb −τbτa) = 0, tracefree

[τa ,τb]† = [(τb)†, (τa)†] = [τb ,τa] anti-hermitian.

hence, we can write [τa ,τb] = ih with h hermitian. Since h can be spanned by τa again, we
have

[τa ,τb] = i f abcτc , (7.22)

where the f abc ’s are the structure constants of the LIE algebra SU (Nc ) defined by (7.22).
Conventionally, the τa ’s are normalized to

Trτaτb = 1

2
δab . (7.23)

A well-known example is given by Nc = 2, where τa = 1
2σ

a (PAULI matrices) such that

[τa ,τb] = 1

4
[σa ,σb] = 1

4
·2iεabcσc = iεabcτc , (7.24)

i. e. the structure constants of SU (2) are f abc
SU (2) = εabc .

For all higher Nc , the generators can be constructed analogously to the PAULI matrices, e. g.
Nc = 3, N 2

c −1 = 8, τa = 1
2λ

a

λ1 =
0 1 0

1 0 0
0 0 0


λ5 =

0 0 −i
0 0 0
i 0 0


λ2 =

0 −i 0
i 0 0
0 0 0


λ6 =

0 0 0
0 0 1
0 1 0


λ3 =

1 0 0
0 −1 0
0 0 0


λ7 =

0 0 0
0 0 −i
0 i 0


λ4 =

0 0 1
0 0 0
1 0 0


λ8 = 1p

3

1 0 0
0 1 0
0 0 −2


(7.25)

These are the GELL-MANN matrices. The determination of the structure constants is straight-
forward:

f abc
SU (3) :

123 147 156 246 257 345 367 458 678

1 1
2 −1

2
1
2

1
2

1
2 −1

2

p
3

2

p
3

2

(7.26)

and correspondingly for the permutations of the indices.

The resulting representation of SU (Nc ) in terms of the τa are irreducible by construction.
It is called the fundamental representation. Of course, higher representations of the same
algebra (7.22), [T a ,T b] = i f abc T c , in terms of higher dimensional matrices T a also exist. An
important one follows directly from the Jacobi identity for the commutator:[

[τa ,τb],τc
]
+

[
[τb ,τc ],τa

]
+

[
[τc ,τa],τb

]
= 0

⇒ f abd f dce + f bcd f d ae + f cad f dbe = 0

⇒ (−i f bad )(−i f edc )− (−i f bcd )(−i f ed a)︸ ︷︷ ︸
=(−i f ead )(−i f bdc )

= i f bed (−i f d ac )

⇒ [(−i f b), (−i f e )]ac = i f bed (−i f d )ac . (7.27)
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Hence, (T a)bc = − f abc is also a representation of the SU (Nc ) LIE algebra, consequentially
generating a corresponding representation of SU (Nc ) in terms of (N 2

c −1)×(N 2
c −1) matrices.

This is the adjoint representation.

Now, let us start with a free DIRAC theory for a massive quark field occuring in Nc colours:

LD = ψ̄i i/∂ψi −mψ̄′ψ′, i = 1, . . . , Nc . (7.28)

As noted before, this theory is invariant under unitary global rotations in colour space:

ψi →U i jψ j , ψ̄i → Ψ̄ j (U †) j i . (7.29)

Using the representation (7.20), it is straightforward to show that the corresponding Noether
current is given by

jµa = ψ̄iγµτa
i jψ

j , ∂µ jµa = 0. (7.30)

Identifying Jµa = −g jµa with a coupling constant g > 0 (in QED: e < 0) as the vector-colour
current that we wish to couple to a photon-like colour gauge field, we recognize that this
colour gauge field also has to carry an adjoint index:

L J =−J A =−Jµa Aa
mu , a = 1, . . . , N 2

c −1. (7.31)

Adding the current term to the free DIRAC theory, we obtain the LAGRANGIAN

L = ψ̄i i /Di j [A]ψ̄ j −mψ̄iψi (7.32)

where the covariant derivative now takes the form

/Di j = γµDµ i j = γµ(∂µδi j − igτa
i j Aa

µ). (7.33)

Incidentally, note that – in order to preserve the invariance of (7.32) under global colour
rotations – Aa

µ is not allowed to remain unmodified under a global rotation. Writing

Aµ i j := τa
i j Aa

µ (7.34)

or Aµ in short, the colour gauge field has to transform as

Aµ→U AµU † (7.35)

under global colour rotations. Note that this is still in line with QED, as for a U (1) symmetry
the generator is a number, say τ

∣∣
U (1) = 1, such that U AµU † = Aµ for QED.

However, inspired from QED we now wish to promote the invariance to a local invariance.
This is possible if the covariant derivative of the spinor transforms as

/Dψ→U (x) /Dψ (7.36)

as analogously in QED, c. f. (7.11) such that

ψ̄i /Dψ→ iψ̄U †U /Dψ= ψ̄i /Dψ. (7.37)
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This condition for the covariant derivative is met if we generalize (7.35) to the local transfor-
mation rule

Aµ→ A′
µ =U AµU † − i

g
(∂µU )U †. (7.38)

We can check this by

Dµψ→ (∂µ− ig A′
µ)ψ′ = (∂µ− igU AµU † − (∂µU )U †)Uψ

=U (∂µ− ig Aµ)ψ+ (∂µU )ψ− (∂µU )U †Uψ

=U Dµψ. (7.39)

Having introduce a field Aµ that couples photon-like to the colour charge of the quarks, we
finally need to specify its dynamics by constructing a kinetic term for Aµ on the level of the
action. For this, we first note that the field strength in electrodynamics follows from the
commutator of covariant derivatives,

U (1) : [Dµ,Dν] = ieFµν. (7.40)

Taking the different sign conventions for the coupling into account, we similarly define the
field strength for SU (Nc ) gauge theory from the covariant derivatives:

Fµν := 1

ig
[Dµ,Dν], Fµν = F a

µντ
a . (7.41)

As discussed in the exercises, this leads to

F a
µν = ∂µAa

ν−∂νAa
µ+ g f abc Ab

µAc
ν. (7.42)

As the covariant derivative transforms homogeneously,

Dµ→U DµU †, (7.43)

also the field strength transforms homogeneously,

Fµν→U FµνU † = F ′
µν (7.44)

and is thus not invariant component-wise in contrast to electrodynamics. Still, we can straight-
forwardly construct a gauge-invariant action

LYM =−1

4
F a
µνF aµν (7.23)≡ −1

2
F a
µνF bµνTrτaτb

=−1

2
TrFµνFµν (7.45)

=−1

2
Tr(U †U FµνU †U Fµν)

cyclicity= −1

2
Tr

[
(U FµνU †)(U FµνU †)

]
=−1

2
TrF ′

µνF ′µν.
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This is the celebrated LAGRANGIAN of YANG-MILLS theory, a SU (Nc ) bosonic theory of a vec-
tor field (spin-1) with a local symmetry. It is important to realize that this action not only
defines the kinetic terms for Aa

µ:

L kin
YM ≈−1

4
(∂µAa

ν−∂νAa
µ)(∂µAνa −∂νAµa) (7.46)

but also contains self-interaction terms which are enforced by gauge invariance (schemati-
cally)

L int
YM ∼+ . . . g (∂µAν)AµAν+ . . . g 2(AµAν)2. (7.47)

Therefore, already the pure YANG-MILLS part is a highly non-trivial interacting theory unlike
the pure MAXWELL part. The gauge field excitations are also called gluons, hence (7.45) de-
scribes gluodynamics. Read together with the DIRAC part of the quarks (7.32), we arrive at
the classical action defining Quantum Chromodynamics (QCD)

SQCD =
ˆ

d4x

[
−1

4
F a
µνF aµν+ ψ̄i /Dψ−mψ̄ψ

]
. (7.48)

Upon the inclusion of different quark flavours, each flavour may have a different mass pa-
rameter m.

Let us finally take a quick look at the classical field equations. As discussed in the exercises,
the EULER-LAGRANGE equations for the gauge/gluon field lead to

Dab
µ F bµν ≡ (∂µδ

ab + g f acb Ac
µ)F bµν = j aν (7.49)

where j aν = ψ̄gγντaψ. Here, we encounter the covariant derivative in the adjoint represen-
tation:

Dab
µ = ∂µδab + g f acb Ac

µ = (∂µ− ig T c Ac
µ)ab with (T c )ab =−i f cab . (7.50)

Let us, for example, consider a static quark-anti-quark pair as a simple model for a meson,

j a 0 = Q︸︷︷︸
charge

na︸︷︷︸
unit vector

in colour space

(
δ(3)(x −x1︸ ︷︷ ︸

quark
position

)−δ(3)( x −x2︸ ︷︷ ︸
anti-quark

position

)
)
. (7.51)

The equation of motion can fully be mapped onto classical electrodynamics, by noting that
a pseudo-abelian ansatz

Aa
µ = na aµ, F a

µν = na fµν (7.52)

with f acbnbnc = 0 leads to

∂µ f µν = j aνna . (7.53)

Hence, the solution is fully equivalent to that of a classical dipole field for the na compo-
nent of the chromoelectric field. Correspondingly, the static potential corresponds to the
COULOMB potential

V (r ) ∼ 1

r
. (7.54)
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However, this is in contradiction with the experimental observation. For instance, if higher
mesonic excitation with higher angular momentum J are studied, one observes that their
total mass2 is proportional to J :

mesons with different flavour content.

m2

J

J ∼ m2. (7.55)

These lines of proportionality are called REGGE trajectories. In contrast to the classical analy-
sis given above, this observation can be described by a string model for the field distribution
of a meson:

• The gluon field of a meson is stringlike with a constant energy per length L (σ string
tension).

• for higher excitations, the quarks on both ends rotate at almost the speed of light.

Then the energy/mass of the system is, R = L 2

m ≡ E = 2

R̂

0

σ√
1− v2(r )

dr =
R̂

0

σ√
1− ( r

R

)2
dr =πσR, (7.56)

whereas the angular momentum is

J = 2

R̂

0

σr v(r )√
1− v2(r )

dr = 2σ

R

R̂

0

r 2√
1− ( r

R

)2
dr = 1

2
πσR2, (7.57)

from which we read off

J = 1

2πσ
m2. (7.58)

This is in agreement with the experimental observation. The slope of the REGGE trajectories
gives

1

2πσ
≈ 0,9

1

GeV2 or σ≈ (430MeV)2. (7.59)

A stringlike colour electric field distribution can be associated with a linear potential,

V (r ) ∼ r. (7.60)

This line-like field distribution between two quarks and the corresponding impossibility to
isolate a single quark is called confinement.

The comparison with our conclusion from the classical equation of motion shows that clas-
sical Chromodynamics is insufficient to describe the basic experimentally verified property
of the strong interactions.

Therefore: Quantum effects modify the dynamics of QCD qualitatively (not only quantita-
tively).
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8 Classical field theory for particle physics - an
example

In this course, we have mainly discussed the classical field theory aspects which are rele-
vant for particle physics. This included mainly the aspects of possible degrees of freedom
(scalars, spinors, vectors, . . .), their symmetries (external spacetime symmetries and internal
symmetries) and the construction of interactions on the level of the classical action. How-
ever, a thorough discussion of particle physics applications typically involves quantization,
as it is the quantized excitations of these fields which are relevant for computing observ-
ables. Also, some aspects which could, in principle, be discussed on the classical level (tree-
level processes), follow much more elegantly within the quantized formalism making it less
worthwhile to deal with the classical equations of motion.

Still, the language of classical field theory does become even more useful than the quantum
notion of Fock spaces etc., as soon as the corresponding experimental situation involves
coherent classical fields. In the following, we want to illustrate this with an example from
experimental searches for new particles.

8.1 Photon-axion-conversion

The standard model of particles has various short comings, a prominent one being the rather
large number of parameters such as fermion masses which do not seem to follow a natural
pattern. Even more serious is the fact that some parameters which, in principle, are allowed
to be sizable seem to be zero or at least unnaturally small. Most prominently, there is an angle
type of parameter θ9 which would physically induce CP violation in the strong interactions.
If so, QCD bound states would be expected to show CP-violating properties. An example
would be given by an electric dipol-moment of the neutron dn .

Measurements so far have only found an upper bound on a possibly nonzero value: |dn | <
1,3 ·10−26 ecm (2020). The precise relation between |dn | and θ is difficult to compute as any
bound-state property of QCD from first principles. However, simple estimates translate the
value as follows into θ: given the diameter of the neutron ∼ 10−15 m and assuming a linear
dependence on θ, we may estimate

|dn | ≈ cθ ·e10−15 m = cθ10−13 ecm (8.1)

where c is a constant to be determined from a full calculation. Generic field theory compu-
tations often yield factors inversely proportional to the phase space and thus to the volume
of a 4-sphere. So the smallest number, one typically gets is c ≈ 1

32π2 ≈ 10−3 and hence we

conclude that θ ≤ 10−10.

As θ is an angle ∈ [0,2π], we would naturally expect it to be of O (1), rendering θ = 10−10 or
smaller rather unnatural. This is the strong-CP problem.

One possibility to explain θ ≈ 0 is to impose a suitable symmetry. This is not completely
trivial as θ receives contributions from two different origins (QCD+ quark mass matrix). All

9a combination of a QCD parameter and the phase of the determinant of the quark mass matrix
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requirements are ultimately satisfied by models that lift θ to be the expectation value of a
dynamical field that acquires a suitable potential in a dynamical fashion. Ultimately, these
models do not only predict (post-dict) θ = 0 but also feature the possibility of having excita-
tions on top of the vacuum, corresponding to a pseudo-scalar field: the axion.

To cut a long story short: the so-far only valid solution to the strong-CP problem predicts
another pseudo-scalar particleφwhich in many respects behaves like the neutral pion π0, in
particular, it has a nonzero mass m and can couple to two photons φ↔ 2γ. The correspond-
ing effective classical field theory is:

Lax ED =−1

4
FµνFµν+ 1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − 1

4
gφFµνF̃µν (8.2)

(Axion electrodynamics), which involves a coupling between the axion and the pseudoscalar
invariant

−1

4
FµνFµν = E ·B . (8.3)

This effective field theory involves two parameters m and g . Dimensional analysis reveals
that g must have an inverse mass dimension, so g−1 corresponds to a mass scale.

In order to solve the strong-CP problem, g and m are related:

m

[1meV]
∼ g

[1013 GeV]−1
. (8.4)

The fact that we haven’t observed any direct signature of the axion puts sever constraints on
the coupling. Hence, the axion can be expected to be rather light (if it exists).

Now, the coupling ∼ φE ·B inspires to look at the following process: consider a plane wave
with electric field component e propagating across a magnetic field B with e ∥ B . Then, this
interaction allows for a mixing of the plane wave e with the axion field φ. So, even if we
initially start with a pure plane wave, the axion field will acquire a nonzero amplitude after
some distance of propagation inside the magnetic field.

A quantitative analysis follows from the field equations. Using a WEYL-COULOMB gauge
(A0 = 0,∇⃗∇∇ ··· A = 0), the plane wave field can be parametrized by a pure vector potential a,
e =−ȧ.

Considering only the relevant case, where e ∥ B , with B being a constant field pointing per-
pendicular to the direction of plane wave propagation,

γ

e
B

z

we can write the interaction term as

−
ˆ

d4x
1

4
gφFµνF̃µν =

ˆ
d4x gφE ·B

=
ˆ

d4x gφe B =
ˆ

d4x g a φ̇B
(8.5)
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where e = |e|,B = |B |, a = |a|. The interaction term hence contributes to both, the MAXWELL

as well as the KLEIN-GORDON equation for a and φ, respectively we find

□φ+m2φ− g e B = 0

□a − g φ̇B = 0.
(8.6)

We are interested in solutions that propagate along the z-direction, hence a = a(z, t ),φ =
φ(z, t )

⇒□→ ∂2
t −∂2

z . (8.7)

Though both fields a andφ are real, it is useful to formally complexify the fields and perform
a FOURIER transformation to frequency space:

a(z, t ) =
ˆ

dωe−iωt a(ω, z)

φ(z, t ) =−i

ˆ
dωe−iωtχ(ω, z).

(8.8)

Then (8.6) turns into equations for the frequency modes a(ω, z) and χ(ω, z):

(−ω2 −∂2
z +m2)(−iχ(ω, z))− igωa(ω, z)B = 0

(−ω2 −∂2
z)a(ω, z)+ gωχ(ω, z)B = 0

(8.9)

or in matrix notation [
1(ω2 +∂2

z)−M
](χ

a

)
= 0 (8.10)

where M =
(

m2 g ωB
g ωB 0

)
. (8.11)

Assuming a plane wave form in wave number space

{a,χ}(ω, z) = {a,χ}(ω)eikz (8.12)

leads to the algebraic equation

(
1(ω2 −k2)−M

)(χ
a

)
= 0. (8.13)

Solutions exist if det(1(ω2 −k2)−M) = 0

⇒ (ω2 −k2 −m2)(ω2 −k2) = (g ωB)2, (8.14)

the roots of which define the dispersion relations

k2
± =ω2 − (m2 − (g B)2)

cos(2θ)±1

2cos(2θ)
(8.15a)

where tan(2θ) = 2ωg B

m2 − (g B)2
. (8.15b)
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θ can be interpreted as a mixing angle between axion and photon. In the limit of vanishing
coupling or vanishing magnetic field g B → 0, we have θ→ 0 and hence k2− = ω2,k2+ = ω2 −
m2.

In this limit, k− corresponds to the wave number of a free photon, and k+ to that of the
massive axion.

In a real experiment, a fixed scale is set by the frequency ω of the propagating laser and the
wave numbers follow from the dispersion relation. The general solution of the equations of
motion for a propagating mode along the positive z direction reads

a(ω, z) = a−(ω)eik−z + tan2θa+(ω)eik+z

χ(ω, z) = ω

k−
tanθa−(ω)eik−z − ω

k+
tanθa+(ω)eik+z .

(8.16)

Let us consider a monochromatic wave, a−(ω) = a+(ω) = const. for one fixedω, and an axion
mass much smaller than the optical laser frequency m2 ≪ω2. We also confine ourselves to
a small mixing angle θ≪ 1. Then, the induced axion amplitude reads (a− = a+ = aIn)

χ(ω, z) = aInθ(eik−z −eik+z) (8.17)

where we keep k± in the phases as the wave numbers can be multiplied by large values of z,
but approximate k± ≈ω in the prefactor.

Now, we use the fact that the classical field equations lead to amplitudes that can be inter-
preted as quantum mechanical probability amplitudes. Hence, we arrive at the probability
that an initial photon amplitude is converted into an axion as a function of the length L of
propagation inside B :

P (γ→φ;L) = |χ|2
|aIn|2

= |θ|2|eik−z −eik+z |2
∣∣∣∣

z=L

= |θ|2(2−2cos((k+−k−)L)). (8.18)

In the above-mentioned limits, the occuring quantities yield

|θ2| =
(
ωg B

m2

)2

, k+−k− =
√
ω2 −m2 −ω=ω

√
1− m2

ω2
−1


≈ω

(
1− m2

2ω2
−1

)
= m2

2ω
. (8.19)

Using 2−2cos x = 4sin2 x
2 , we get

P (γ→φ;L) = 4

(
ωg B

m2

)2

sin2 m2L

4ω
. (8.20)

For a given length of the magnetic field, the probability in the small mass limit becomes

P (γ→φ,L)

∣∣∣∣
m→0

≈ 1

4
(g B L)2, (8.21)
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γ

wall
B B

Laser detector

Fig. 3: Light-shining-through-wall experiment.

and thus independent of the mass.

When it comes to discovery experiments, it is not sufficient to convert photons to axions,
because we have no axionmeter that could measure the axion amplitude. Instead one uses
the following idea (SIKIVIE 1983, VAN BIBBER 1987):

Shine a laser onto a wall and try to observe photons behind the wall. Use a strong magnetic
field to convert part of the photon wave (function) into an axion in front of the wall and
back into a photon behind the wall. Since the axion is weakly interaction, it can traverse the
wall in contrast to photons. This type of experiment has a couple of attractive features: the
interaction regions (size of the B-field) can be macroscopic (in contrast to small collision
points on colliders) and can even be enhanced by the use of cavities.

The number of incoming photons can be very large ≥ 1020, whereas the detection of a single
photon can already constitute a signal of new physics. Apart from exceedingly small pro-
cesses from photon-neutrino pair processes or photon-graviton conversion, the experiment
is essentially background free.

A number of experiments (BFRT, BMW, GammeV, LISPS and ALPS) have been performed.
The non observation of a signal constitute the currently best laboratory bounds on axions,
complementing astrophysical bounds. Currently, a major upgrade of ALPS and DESY is in
preparation.

To get a rough estimate on the sensitivity, we first note that the back-conversion φ→ γ fea-
tures the same probability as in (8.21). Assuming that the magnetic field behind and in front
of the wall have the same length L, we have

P (γ→φ→ γ;L)

∣∣∣∣
m→0

≈ 1

16
C (g B L)4 (8.22)

where C is an enhancement factor if cavities are used in order to enhance the photonic input

power. For one cavity in front of the wall C ∼ (N
2

)4
the finesse of the cavity which can be of

order N ∼ 103. The current upgrade of ALPS even plans to put a locked cavity behind the

wall, which would give a C ∼ (N
2

)8
improvement. Converting the emits into GeV, we have

P ≈ 1

16
C

(
g

[GeV]−1

B

[1T]

L

[1m]

)4

(8.23)

with Nγ being the number of incoming photons per second, the number of reconverted pho-
tons per second behind the wall is Nobs = NγP .
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Having Nγ in excess of 1020, experiments with C = 1 already become sensitive to values of

g−1 ∼ 105 GeV = 102 TeV (8.24)

for meter size and Tesla strong fields.

In fact, ALPS has reached a sensitivity g−1 ≤ 107 GeV which is a factor of 1000 larger than
current collider energy scales.
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